Light penetration in bladder tissue: implications for the intravesical photodynamic therapy of bladder tumours.
Affiliation
Paterson Institute for Cancer Research, Christie Hospital, Departments of Urology, Hope Hospital, Salford Royal Hospitals Trust, Salford, South Manchester University Hospital, and Christie Hospital, Manchester, UK.Issue Date
2000-10
Metadata
Show full item recordAbstract
OBJECTIVES: To assess (i) the optical properties and depth of penetration of varying wavelengths of light in ex-vivo human bladder tissue, using specimens of normal bladder wall, transitional cell carcinoma (TCC) and bladder tissue after exposure to ionizing radiation; and (ii) to estimate the depth of bladder wall containing cancer that could potentially be treated with intravesical photodynamic therapy (PDT), assuming satisfactory tissue levels of photosensitizer. Materials and methods The study included 11 cystectomy specimens containing invasive TCC (five from patients who had previously received external-beam bladder radiotherapy, but with recurrent TCC) and three 'normal' bladders removed from patients treated by exenteration surgery for extravesical pelvic cancer. Full-thickness bladder wall and tumour samples were taken from these specimens and using an 'intravesical' and a previously validated interstitial model, the optical penetration depths (i.e. the tissue depth at which the light fluence is 37% of incident) were calculated at wavelengths of 633, 673 and 693 nm. RESULTS: There were no significant differences in light penetration between normal and tumour-affected bladder tissue at each wavelength. There were significant differences in light penetration among wavelengths; light at 693 nm penetrated approximately 40% further than light at 633 nm (P < 0.002). The light currently used in bladder PDT (633 nm) has a mean (SEM) optical penetration depth of 4.0 (0.1) mm within TCC. In addition, at this wavelength, there was 29% greater light penetration in previously irradiated than in unirradiated bladder wall (P = 0.001). This did not occur in the tumour-affected bladder. CONCLUSIONS: Bladder tissue is relatively more translucent than other human tissues and there is therefore great potential for PDT in the treatment of bladder cancer. As there is no difference in light penetration between TCC and normal bladder tissue, a tumour-specific response with diffuse illumination of the bladder will depend on drug localization within the tumour. The currently used wavelength of 633 nm can be expected to exert a PDT effect within bladder tumour up to a depth of 20 mm. Increasing the wavelength will allow deeper pathology to be treated.Citation
Light penetration in bladder tissue: implications for the intravesical photodynamic therapy of bladder tumours. 2000, 86 (6):638-43 BJU Int.Journal
BJU internationalDOI
10.1046/j.1464-410x.2000.00872.xPubMed ID
11069369Type
ArticleLanguage
enISSN
1464-4096ae974a485f413a2113503eed53cd6c53
10.1046/j.1464-410x.2000.00872.x
Scopus Count
Collections
Related articles
- Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.
- Authors: van Staveren HJ, Keijzer M, Keesmaat T, Jansen H, Kirkel WJ, Beek JF, Star WM
- Issue date: 1996 Apr
- The effect of photodynamic therapy on rat urinary bladder with orthotopic urothelial carcinoma.
- Authors: Grönlund-Pakkanen S, Wahlfors J, Talja M, Kosma VM, Pakkanen TM, Ala-Opas M, Alhava E, Moore RB
- Issue date: 2003 Jul
- Photodynamic therapy for refractory superficial bladder cancer: long-term clinical outcomes of single treatment using intravesical diffusion medium.
- Authors: Manyak MJ, Ogan K
- Issue date: 2003 Oct
- Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation.
- Authors: van Staveren HJ, Beek JF, Ramaekers JW, Keijzer M, Star WM
- Issue date: 1994 Jun
- Bladder PDT with intravesical clear and light scattering media: effect of an eccentric isotropic light source on the light distribution.
- Authors: van Staveren HJ, Bertrams RH, Star WM
- Issue date: 1997