• Login
    View Item 
    •   Home
    • The Manchester Institute Cancer Research UK
    • All Paterson Institute for Cancer Research
    • View Item
    •   Home
    • The Manchester Institute Cancer Research UK
    • All Paterson Institute for Cancer Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Immunohistochemical analysis of expression and allelotype of mismatch repair genes (hMLH1 and hMSH2) in bladder cancer.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Kassem, Heba S
    Varley, Jennifer
    Hamam, S M
    Margison, Geoffrey P
    Affiliation
    CRC Carcinogenesis Group, UK.
    Issue Date
    2001-02-02
    
    Metadata
    Show full item record
    Abstract
    Mutation of human homologues of DNA mismatch repair (MMR) genes in tumours has been shown to be associated with the phenomenon of microsatellite instability (MSI). Several studies have reported the occurrence of MSI in bladder cancer, but evidence of involvement of MMR genes in the pathogenesis of this cancer is still unclear. We therefore utilized quantitative immunohistochemical (IHC) image analysis and PCR-based allelotype analysis to determine hMLH1 and hMSH2 genes alteration in a cohort of Egyptian bladder cancer samples. IHC analysis of 24 TCC and 12 SCC revealed marked- intra and intertumour heterogeneity in the levels of expression of the two MMR proteins. One TCC lost MLH1 expression and one lost MSH2, (1/24, 4%), and one SCC lost MSH2 (1/12, 8%). A large proportion of analysed tumours revealed a percentage positivity of less than 50% for MLH1 and MSH2 expression (44% and 69%, respectively). Complete loss of heterozygosity in three dinucleotide repeats lying within, or in close proximity to, hMLH1 and hMSH2 was rare (2/57, (4%) for MLH1; and 1/55, (2%) for MSH2), however allelic imbalance was detected in 11/57 (hMLH1) and 10/55 (hMSH2) at any of the informative microsatellite loci. These alterations in structure and expression of DNA MMR genes suggest their possible involvement in the tumorigenesis and/or progression of bladder cancer.
    Citation
    Immunohistochemical analysis of expression and allelotype of mismatch repair genes (hMLH1 and hMSH2) in bladder cancer. 2001, 84 (3):321-8 Br. J. Cancer
    Journal
    British Journal of Cancer
    URI
    http://hdl.handle.net/10541/85606
    DOI
    10.1054/bjoc.2000.1595
    PubMed ID
    11161395
    Type
    Article
    Language
    en
    ISSN
    0007-0920
    ae974a485f413a2113503eed53cd6c53
    10.1054/bjoc.2000.1595
    Scopus Count
    Collections
    All Paterson Institute for Cancer Research

    entitlement

    Related articles

    • BAT-26 microsatellite instability does not correlate with the loss of hMLH1 and hMSH2 protein expression in sporadic endometrial cancers.
    • Authors: Miturski R, Bogusiewicz M, Tarkowski R, Ciotta C, Bignami M, Burnouf D, Jakowicki JA
    • Issue date: 2003 Jul-Aug
    • Differential expression of hMLH1 and hMSH2 is related to bladder cancer grade, stage and prognosis but not microsatellite instability.
    • Authors: Catto JW, Xinarianos G, Burton JL, Meuth M, Hamdy FC
    • Issue date: 2003 Jul 1
    • Allelic imbalance at the DNA mismatch repair loci, hMSH2, hMLH1, hPMS1, hPMS2 and hMSH3, in squamous cell carcinoma of the head and neck.
    • Authors: Nunn J, Nagini S, Risk JM, Prime W, Maloney P, Liloglou T, Jones AS, Rogers SR, Gosney JR, Woolgar J, Field JK
    • Issue date: 2003 Feb
    • Microsatellite instability and mutation analysis of candidate genes in unselected sardinian patients with endometrial carcinoma.
    • Authors: Baldinu P, Cossu A, Manca A, Satta MP, Pisano M, Casula M, Dessole S, Pintus A, Tanda F, Palmieri G
    • Issue date: 2002 Jun 15
    • Mononucleotide markers of microsatellite instability in carcinomas of the urinary bladder.
    • Authors: Saetta AA, Goudopoulou A, Korkolopoulou P, Voutsinas G, Thomas-Tsagli E, Michalopoulos NV, Patsouris E
    • Issue date: 2004 Sep

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      AZD8186 study 1: phase I study to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary anti-tumour activity of AZD8186 in patients with advanced castration-resistant prostate cancer (CRPC), squamous non-small cell lung cancer, triple negative breast cancer and with PTEN-deficient/mutated or PIK3CB mutated/amplified malignancies, as monotherapy and in combination with vistusertib (AZD2014) or abiraterone acetate.

      Lillian, S; De Bono, J; Higano, C; Shapiro, G; Brugger, W; Mitchell, P; Colebrook, S; Klinowska, T; Barry, S; Dean, Emma J; et al. (2016-12)
    • Thumbnail

      Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.

      Balliet, R M; Capparelli, C; Guido, C; Pestell, T G; Martinez-Outschoorn, U E; Lin, Z; Whitaker-Menezes, D; Chiavarina, B; Pestell, R G; Howell, Anthony; et al. (2011-12-01)
      Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production, and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as "fuel" for oxidative mitochondrial metabolism.  Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach.  TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis.  Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis, and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and "host cell aging," in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.
    • Thumbnail

      Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a Clinical Cancer Genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family.

      Evans, D Gareth R; Shenton, Andrew; Woodward, Emma; Lalloo, Fiona; Howell, Anthony; Maher, Eamonn R; Academic Unit of Medical Genetics and Regional Genetics Service, St Mary's Hospital Manchester M13 0JH, UK. gareth.evans@cmmc.nhs.uk (2008)
      BACKGROUND: The identification of a BRCA1 or BRCA2 mutation in familial breast cancer kindreds allows genetic testing of at risk relatives. However, considerable controversy exists regarding the cancer risks in women who test positive for the family mutation. METHODS: We reviewed 385 unrelated families (223 with BRCA1 and 162 with BRCA2 mutations) ascertained through two regional cancer genetics services. We estimated the penetrance for both breast and ovarian cancer in female mutation carriers (904 proven mutation carriers - 1442 females in total assumed to carry the mutation) and also assessed the effect on penetrance of mutation position and birth cohort. RESULTS: Breast cancer penetrance to 70 and to 80 years was 68% (95%CI 64.7-71.3%) and 79.5% (95%CI 75.5-83.5%) respectively for BRCA1 and 75% (95%CI 71.7-78.3%) and 88% (95%CI 85.3-91.7%) for BRCA2. Ovarian cancer risk to 70 and to 80 years was 60% (95%CI 65-71%) and 65% (95%CI 75-84%) for BRCA1 and 30% (95%CI 25.5-34.5%) and 37% (95%CI 31.5-42.5%) for BRCA2. These risks were borne out by a prospective study of cancer in the families and genetic testing of unaffected relatives. We also found evidence of a strong cohort effect with women born after 1940 having a cumulative risk of 22% for breast cancer by 40 years of age compared to 8% in women born before 1930 (p = 0.0005). CONCLUSION: In high-risk families, selected in a genetics service setting, women who test positive for the familial BRCA1/BRCA2 mutation are likely to have cumulative breast cancer risks in keeping with the estimates obtained originally from large families. This is particularly true for women born after 1940.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.