Stage- and CA125-related survival in patients with epithelial ovarian cancer treated at a cancer center.
Authors
Board, Ruth EBruijns, C T P H
Pronk, A E
Ryder, W David J
Wilkinson, Peter M
Welch, Richard
Shanks, Jonathan H
Connolly, G
Slade, Richard J
Reynolds, K
Kitchener, Henry C
Jayson, Gordon C
Affiliation
Cancer Research UK Department of Medical Oncology, Christie Hospital, Manchester, United Kingdom. ruth.board@christie-tr.nwest.nhs.ukIssue Date
2006
Metadata
Show full item recordAbstract
Current accepted prognostic indicators in ovarian cancer include performance status, surgical (FIGO) staging, and residual disease after operation. Here we present data from a prospective analysis of patients with ovarian cancer treated at the Christie Hospital. We confirm the independent prognostic effects of FIGO staging, performance status, and residual disease in our group of patients and furthermore show that CA125 levels at presentation to the oncology service are of independent prognostic significance (P= 0.02). We present survival data and show that the 3-year, cancer-specific survival for stage I disease is 90%. We postulate that this good survival may in part be due to the use of computed tomography scanning at presentation to allow accurate staging. Further clinical trials are needed to test whether combinations of surgical, histologic, biochemical, and radiologic parameters can be used to identify a population with such a good prognosis that adjuvant therapy is not required.Citation
Stage- and CA125-related survival in patients with epithelial ovarian cancer treated at a cancer center., 16 Suppl 1:18-24 Int. J. Gynecol. CancerJournal
International Journal of Gynecological CancerDOI
10.1111/j.1525-1438.2006.00308.xPubMed ID
16515562Type
ArticleLanguage
enISSN
1048-891Xae974a485f413a2113503eed53cd6c53
10.1111/j.1525-1438.2006.00308.x
Scopus Count
Related articles
- Combined score of pretreatment platelet count and CA125 level (PLT-CA125) stratified prognosis in patients with FIGO stage IV epithelial ovarian cancer.
- Authors: Chen JP, Huang QD, Wan T, Tu H, Gu HF, Cao JY, Liu JH
- Issue date: 2019 Jul 31
- Perioperative changes in serum CA125 levels: a prognostic factor for disease-specific survival in patients with ovarian cancer.
- Authors: Zwakman N, van de Laar R, Van Gorp T, Zusterzeel PL, Snijders MP, Ferreira I, Massuger LF, Kruitwagen RF
- Issue date: 2017 Jan
- Significance of serum CA125 and TPS antigen levels for determination of overall survival after three chemotherapy courses in ovarian cancer patients during long-term follow-up.
- Authors: van Dalen A, Favier J, Hallensleben E, Burges A, Stieber P, de Bruijn HW, Fink D, Ferrero A, McGing P, Harlozinska A, Kainz Ch, Markowska J, Molina R, Sturgeon C, Bowman A, Einarsson R, Goike H
- Issue date: 2009
- High levels of pretreatment CA125 are associated to improved survival in high grade serous ovarian carcinoma.
- Authors: Morales-Vásquez F, Pedernera E, Reynaga-Obregón J, López-Basave HN, Gómora MJ, Carlón E, Cárdenas S, Silva-Ayala R, Almaraz M, Méndez C
- Issue date: 2016 Jul 7
- Preoperative CA 125: an independent prognostic factor in patients with stage I epithelial ovarian cancer.
- Authors: Nagele F, Petru E, Medl M, Kainz C, Graf AH, Sevelda P
- Issue date: 1995 Aug
Related items
Showing items related by title, author, creator and subject.
-
AZD8186 study 1: phase I study to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary anti-tumour activity of AZD8186 in patients with advanced castration-resistant prostate cancer (CRPC), squamous non-small cell lung cancer, triple negative breast cancer and with PTEN-deficient/mutated or PIK3CB mutated/amplified malignancies, as monotherapy and in combination with vistusertib (AZD2014) or abiraterone acetate.Lillian, S; De Bono, J; Higano, C; Shapiro, G; Brugger, W; Mitchell, P; Colebrook, S; Klinowska, T; Barry, S; Dean, Emma J; et al. (2016-12)
-
Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.Balliet, R M; Capparelli, C; Guido, C; Pestell, T G; Martinez-Outschoorn, U E; Lin, Z; Whitaker-Menezes, D; Chiavarina, B; Pestell, R G; Howell, Anthony; et al. (2011-12-01)Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production, and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as "fuel" for oxidative mitochondrial metabolism. Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach. TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis. Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis, and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and "host cell aging," in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.
-
Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a Clinical Cancer Genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family.Evans, D Gareth R; Shenton, Andrew; Woodward, Emma; Lalloo, Fiona; Howell, Anthony; Maher, Eamonn R; Academic Unit of Medical Genetics and Regional Genetics Service, St Mary's Hospital Manchester M13 0JH, UK. gareth.evans@cmmc.nhs.uk (2008)BACKGROUND: The identification of a BRCA1 or BRCA2 mutation in familial breast cancer kindreds allows genetic testing of at risk relatives. However, considerable controversy exists regarding the cancer risks in women who test positive for the family mutation. METHODS: We reviewed 385 unrelated families (223 with BRCA1 and 162 with BRCA2 mutations) ascertained through two regional cancer genetics services. We estimated the penetrance for both breast and ovarian cancer in female mutation carriers (904 proven mutation carriers - 1442 females in total assumed to carry the mutation) and also assessed the effect on penetrance of mutation position and birth cohort. RESULTS: Breast cancer penetrance to 70 and to 80 years was 68% (95%CI 64.7-71.3%) and 79.5% (95%CI 75.5-83.5%) respectively for BRCA1 and 75% (95%CI 71.7-78.3%) and 88% (95%CI 85.3-91.7%) for BRCA2. Ovarian cancer risk to 70 and to 80 years was 60% (95%CI 65-71%) and 65% (95%CI 75-84%) for BRCA1 and 30% (95%CI 25.5-34.5%) and 37% (95%CI 31.5-42.5%) for BRCA2. These risks were borne out by a prospective study of cancer in the families and genetic testing of unaffected relatives. We also found evidence of a strong cohort effect with women born after 1940 having a cumulative risk of 22% for breast cancer by 40 years of age compared to 8% in women born before 1930 (p = 0.0005). CONCLUSION: In high-risk families, selected in a genetics service setting, women who test positive for the familial BRCA1/BRCA2 mutation are likely to have cumulative breast cancer risks in keeping with the estimates obtained originally from large families. This is particularly true for women born after 1940.