• Login
    View Item 
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsProfilesView

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Changes in hyaluronan production and metabolism following ischaemic stroke in man.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Al'Qteishat, Ahmed
    Gaffney, John
    Krupinski, Jerzy
    Rubio, Francisco
    West, David C
    Kumar, Shant
    Kumar, Patricia
    Mitsios, Nick
    Slevin, Mark
    Affiliation
    Department of Biology, Chemistry and Health Science, Manchester Metropolitan University, Liverpool, UK.
    Issue Date
    2006-08
    
    Metadata
    Show full item record
    Abstract
    The extent of recovery from stroke is dependent on the survival of neurons, particularly in peri-infarcted regions. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion and better recovery. Hyaluronan (HA) is an important component of the brain extracellular matrix and a regulator of cellular differentiation, migration, proliferation and angiogenesis. We have found that the production of total HA and low molecular mass 3-10 disaccharides of HA (o-HA) was increased in post-mortem tissue and in the serum of patients 1, 3, 7 and 14 days (peaking at 7 days) after ischaemic stroke. Hyaluronidase activity was also increased in serum samples (peaking after 3 days), which might explain the subsequent increase in o-HA. Affinity-histochemical staining was performed using a HA-specific biotinylated binding protein, and it showed enhanced deposition of HA in blood vessels and intracellularly as well as in the nuclei of peri-infarcted neurons. Western blotting and immunohistochemistry demonstrated upregulation of HA synthases (HAS1 and 2) and hyaluronidases (HYAL1 and 2) in inflammatory cells from both stroke and peri-infarcted regions of the brain. HYAL1 was upregulated in microvesssels and intracellularly in neurons, whilst HAS2 became translocated into the nuclei of neurons in peri-infarcted areas. Receptor for HA-mediated motility was observed intracellularly and in the nuclei of neurons, in the tunica media of larger blood vessels and in the endothelial cells of microvessels in stroke-affected tissue, whilst expression of other receptors for HA, CD44 and tumour necrosis factor-stimulated gene 6 (TSG-6) were mainly increased in infiltrating mononuclear cells from inflammatory regions. The data presented here demonstrate that HA breakdown is a feature of the acute stage of stroke injury. Increased o-HA production soon after stroke may be detrimental through enhancement of the inflammatory response, whilst activation of HA and/or o-HA-induced cellular signalling pathways in neurons and microvessels may impact on the remodelling process by stimulating angiogenesis and revascularization, as well as the survival of susceptible neurons.
    Citation
    Changes in hyaluronan production and metabolism following ischaemic stroke in man. 2006, 129 (Pt 8):2158-76 Brain
    Journal
    Brain
    URI
    http://hdl.handle.net/10541/72535
    DOI
    10.1093/brain/awl139
    PubMed ID
    16731541
    Type
    Article
    Language
    en
    ISSN
    1460-2156
    ae974a485f413a2113503eed53cd6c53
    10.1093/brain/awl139
    Scopus Count
    Collections
    All Christie Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.