Show simple item record

dc.contributor.authorPanbianco, Costanza
dc.contributor.authorWeinkove, David
dc.contributor.authorZanin, Esther
dc.contributor.authorJones, David R
dc.contributor.authorDivecha, Nullin
dc.contributor.authorGotta, Monica
dc.contributor.authorAhringer, Julie
dc.date.accessioned2009-05-21T16:32:09Z
dc.date.available2009-05-21T16:32:09Z
dc.date.issued2008-08
dc.identifier.citationA casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning. 2008, 15 (2):198-208 Dev. Cellen
dc.identifier.issn1534-5807
dc.identifier.pmid18694560
dc.identifier.doi10.1016/j.devcel.2008.06.002
dc.identifier.urihttp://hdl.handle.net/10541/68736
dc.description.abstractSpindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP(2) synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Galpha regulation. PPK-1 is posteriorly enriched in the one-celled embryo through PAR and CSNK-1 activities. Loss of CSNK-1 causes uniformly high PPK-1 levels, high symmetric cortical levels of GPR-1/2 and LIN-5, and increased spindle pulling forces. In contrast, knockdown of ppk-1 leads to low GPR-1/2 levels and decreased spindle forces. Furthermore, loss of CSNK-1 leads to increased levels of PIP(2). We propose that asymmetric generation of PIP(2) by PPK-1 directs the posterior enrichment of GPR-1/2 and LIN-5, leading to posterior spindle displacement.
dc.language.isoenen
dc.subjectCell Divisionen
dc.subject.meshAnimals
dc.subject.meshCaenorhabditis elegans
dc.subject.meshCaenorhabditis elegans Proteins
dc.subject.meshCasein Kinase I
dc.subject.meshCell Nucleus
dc.subject.meshEmbryo, Nonmammalian
dc.subject.meshMitotic Spindle Apparatus
dc.subject.meshModels, Biological
dc.subject.meshPhosphatidylinositol 4,5-Diphosphate
dc.subject.meshPhosphotransferases (Alcohol Group Acceptor)
dc.subject.meshProtein Transport
dc.subject.meshProtein-Serine-Threonine Kinases
dc.subject.meshRNA Interference
dc.titleA casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning.en
dc.typeArticleen
dc.contributor.departmentThe Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB21QN, UK.en
dc.identifier.journalDevelopmental Cellen
html.description.abstractSpindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP(2) synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Galpha regulation. PPK-1 is posteriorly enriched in the one-celled embryo through PAR and CSNK-1 activities. Loss of CSNK-1 causes uniformly high PPK-1 levels, high symmetric cortical levels of GPR-1/2 and LIN-5, and increased spindle pulling forces. In contrast, knockdown of ppk-1 leads to low GPR-1/2 levels and decreased spindle forces. Furthermore, loss of CSNK-1 leads to increased levels of PIP(2). We propose that asymmetric generation of PIP(2) by PPK-1 directs the posterior enrichment of GPR-1/2 and LIN-5, leading to posterior spindle displacement.


Files in this item

This item appears in the following Collection(s)

Show simple item record