Crowd-sourced benchmarking of single-sample tumor subclonal reconstruction
Name:
s41587-024-02250-y.pdf
Size:
19.88Mb
Format:
PDF
Description:
Found with Open Access Button
Authors
Salcedo, A.Tarabichi, M.
Buchanan, A.
Espiritu, S. M. G.
Zhang, H.
Zhu, K.
Ou Yang, T. H.
Leshchiner, I.
Anastassiou, D.
Guan, Y.
Jang, G. H.
Mootor, M. F. E.
Haase, K.
Deshwar, A. G.
Zou, W.
Umar, I.
Dentro, S.
Wintersinger, J. A.
Chiotti, K.
Demeulemeester, J.
Jolly, C.
Sycza, L.
Ko, M.
Wedge, David C
Morris, Q. D.
Ellrott, K.
Van Loo, P.
Boutros, P. C.
Affiliation
Manchester Cancer Research Center, University of Manchester, Manchester, UK.Issue Date
2024
Metadata
Show full item recordAbstract
Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors. Algorithms were scored on seven independent tasks, leading to 12,061 total runs. Algorithm choice influenced performance substantially more than tumor features but purity-adjusted read depth, copy-number state and read mappability were associated with the performance of most algorithms on most tasks. No single algorithm was a top performer for all seven tasks and existing ensemble strategies were unable to outperform the best individual methods, highlighting a key research need. All containerized methods, evaluation code and datasets are available to support further assessment of the determinants of subclonal reconstruction accuracy and development of improved methods to understand tumor evolution.Citation
Salcedo A, Tarabichi M, Buchanan A, Espiritu SMG, Zhang H, Zhu K, et al. Crowd-sourced benchmarking of single-sample tumor subclonal reconstruction. Nature biotechnology. 2024 Jun 11.Journal
Nature BiotechnologyDOI
10.1038/s41587-024-02250-yPubMed ID
38862616Additional Links
https://dx.doi.org/10.1038/s41587-024-02250-yType
ArticleLanguage
enae974a485f413a2113503eed53cd6c53
10.1038/s41587-024-02250-y
Scopus Count
Collections
Related articles
- Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection.
- Authors: Lee AY, Ewing AD, Ellrott K, Hu Y, Houlahan KE, Bare JC, Espiritu SMG, Huang V, Dang K, Chong Z, Caloian C, Yamaguchi TN, ICGC-TCGA DREAM Somatic Mutation Calling Challenge Participants, Kellen MR, Chen K, Norman TC, Friend SH, Guinney J, Stolovitzky G, Haussler D, Margolin AA, Stuart JM, Boutros PC
- Issue date: 2018 Nov 6
- Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection.
- Authors: Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, Bare JC, P'ng C, Waggott D, Sabelnykova VY, ICGC-TCGA DREAM Somatic Mutation Calling Challenge participants, Kellen MR, Norman TC, Haussler D, Friend SH, Stolovitzky G, Margolin AA, Stuart JM, Boutros PC
- Issue date: 2015 Jul
- A community effort to create standards for evaluating tumor subclonal reconstruction.
- Authors: Salcedo A, Tarabichi M, Espiritu SMG, Deshwar AG, David M, Wilson NM, Dentro S, Wintersinger JA, Liu LY, Ko M, Sivanandan S, Zhang H, Zhu K, Ou Yang TH, Chilton JM, Buchanan A, Lalansingh CM, P'ng C, Anghel CV, Umar I, Lo B, Zou W, DREAM SMC-Het Participants, Simpson JT, Stuart JM, Anastassiou D, Guan Y, Ewing AD, Ellrott K, Wedge DC, Morris Q, Van Loo P, Boutros PC
- Issue date: 2020 Jan
- MixClone: a mixture model for inferring tumor subclonal populations.
- Authors: Li Y, Xie X
- Issue date: 2015
- A practical guide to cancer subclonal reconstruction from DNA sequencing.
- Authors: Tarabichi M, Salcedo A, Deshwar AG, Ni Leathlobhair M, Wintersinger J, Wedge DC, Van Loo P, Morris QD, Boutros PC
- Issue date: 2021 Feb