• Login
    View Item 
    •   Home
    • The Manchester Institute Cancer Research UK
    • All Paterson Institute for Cancer Research
    • View Item
    •   Home
    • The Manchester Institute Cancer Research UK
    • All Paterson Institute for Cancer Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsProfilesView

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    36703164.pdf
    Size:
    1.878Mb
    Format:
    PDF
    Description:
    Identified with Open Access button
    Download
    Authors
    Mueller, S. H.
    Lai, A. G.
    Valkovskaya, M.
    Michailidou, K.
    Bolla, M. K.
    Wang, Q.
    Dennis, J.
    Lush, M.
    Abu-Ful, Z.
    Ahearn, T. U.
    Andrulis, I. L.
    Anton-Culver, H.
    Antonenkova, N. N.
    Arndt, V.
    Aronson, K. J.
    Augustinsson, A.
    Baert, T.
    Freeman, L. E. B.
    Beckmann, M. W.
    Behrens, S.
    Benitez, J.
    Bermisheva, M.
    Blomqvist, C.
    Bogdanova, N. V.
    Bojesen, S. E.
    Bonanni, B.
    Brenner, H.
    Brucker, S. Y.
    Buys, S. S.
    Castelao, J. E.
    Chan, T. L.
    Chang-Claude, J.
    Chanock, S. J.
    Choi, J. Y.
    Chung, W. K.
    Colonna, S. V.
    Cornelissen, S.
    Couch, F. J.
    Czene, K.
    Daly, M. B.
    Devilee, P.
    Dörk, T.
    Dossus, L.
    Dwek, M.
    Eccles, D. M.
    Ekici, A. B.
    Eliassen, A. H.
    Engel, C.
    Evans, D. G.
    Fasching, P. A.
    Fletcher, O.
    Flyger, H.
    Gago-Dominguez, M.
    Gao, Y. T.
    García-Closas, M.
    García-Sáenz, J. A.
    Genkinger, J.
    Gentry-Maharaj, A.
    Grassmann, F.
    Guénel, P.
    Gündert, M.
    Haeberle, L.
    Hahnen, E.
    Haiman, C. A.
    Håkansson, N.
    Hall, P.
    Harkness, E. F.
    Harrington, P. A.
    Hartikainen, J. M.
    Hartman, M.
    Hein, A.
    Ho, W. K.
    Hooning, M. J.
    Hoppe, R.
    Hopper, J. L.
    Houlston, R. S.
    Howell, Anthony
    Hunter, D. J.
    Huo, D.
    Ito, H.
    Iwasaki, M.
    Jakubowska, A.
    Janni, W.
    John, E. M.
    Jones, M. E.
    Jung, A.
    Kaaks, R.
    Kang, D.
    Khusnutdinova, E. K.
    Kim, S. W.
    Kitahara, C. M.
    Koutros, S.
    Kraft, P.
    Kristensen, V. N.
    Kubelka-Sabit, K.
    Kurian, A. W.
    Kwong, A.
    Lacey, J. V.
    Lambrechts, D.
    Le Marchand, L.
    Li, J.
    Linet, M.
    Lo, W. Y.
    Long, J.
    Lophatananon, A.
    Mannermaa, A.
    Manoochehri, M.
    Margolin, S.
    Matsuo, K.
    Mavroudis, D.
    Menon, U.
    Muir, K.
    Murphy, R. A.
    Nevanlinna, H.
    Newman, W. G.
    Niederacher, D.
    O'Brien, K. M.
    Obi, N.
    Offit, K.
    Olopade, O. I.
    Olshan, A. F.
    Olsson, H.
    Park, S. K.
    Patel, A. V.
    Patel, A.
    Perou, C. M.
    Peto, J.
    Pharoah, P. D. P.
    Plaseska-Karanfilska, D.
    Presneau, N.
    Rack, B.
    Radice, P.
    Ramachandran, D.
    Rashid, M. U.
    Rennert, G.
    Romero, A.
    Ruddy, K. J.
    Ruebner, M.
    Saloustros, E.
    Sandler, D. P.
    Sawyer, E. J.
    Schmidt, M. K.
    Schmutzler, R. K.
    Schneider, M. O.
    Scott, C.
    Shah, M.
    Sharma, P.
    Shen, C. Y.
    Shu, X. O.
    Simard, J.
    Surowy, H.
    Tamimi, R. M.
    Tapper, W. J.
    Taylor, J. A.
    Teo, S. H.
    Teras, L. R.
    Toland, A. E.
    Tollenaar, R.
    Torres, D.
    Torres-Mejía, G.
    Troester, M. A.
    Truong, T.
    Vachon, C. M.
    Vijai, J.
    Weinberg, C. R.
    Wendt, C.
    Winqvist, R.
    Wolk, A.
    Wu, A. H.
    Yamaji, T.
    Yang, X. R.
    Yu, J. C.
    Zheng, W.
    Ziogas, A.
    Ziv, E.
    Dunning, A. M.
    Easton, D. F.
    Hemingway, H.
    Hamann, U.
    Kuchenbaecker, K. B.
    Show allShow less
    Affiliation
    Institute of Health Informatics, University College London, London, UK
    Issue Date
    2023
    
    Metadata
    Show full item record
    Abstract
    Background: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. Methods: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. Results: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Conclusions: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts.
    Citation
    Mueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, et al. Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry. Genome Med. 2023 Jan 26;15(1):7. PubMed PMID: 36703164. Pubmed Central PMCID: PMC9878779. Epub 2023/01/27. eng.
    Journal
    Genome Medicine
    URI
    http://hdl.handle.net/10541/626024
    DOI
    10.1186/s13073-022-01152-5
    PubMed ID
    36703164
    Additional Links
    https://dx.doi.org/10.1186/s13073-022-01152-5
    Type
    Article
    Language
    en
    ae974a485f413a2113503eed53cd6c53
    10.1186/s13073-022-01152-5
    Scopus Count
    Collections
    All Paterson Institute for Cancer Research

    entitlement

     
    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.