• Login
    View Item 
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Targeting hypoxia in solid and haematological malignancies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    36320041.pdf
    Size:
    955.4Kb
    Format:
    PDF
    Description:
    Identified with Open Access button
    Download
    Authors
    Harris, Bill
    Saleem, Sana
    Cook, Natalie
    Searle, Emma J
    Affiliation
    Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK
    Issue Date
    2022
    
    Metadata
    Show full item record
    Abstract
    Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
    Citation
    Harris B, Saleem S, Cook N, Searle E. Targeting hypoxia in solid and haematological malignancies. Journal of experimental & clinical cancer research : CR. 2022 Nov 2;41(1):318. PubMed PMID: 36320041. Pubmed Central PMCID: PMC9628170. Epub 2022/11/03. eng.
    Journal
    Journal of Experimental & Clinical Cancer Research
    URI
    http://hdl.handle.net/10541/625751
    DOI
    10.1186/s13046-022-02522-y
    PubMed ID
    36320041
    Additional Links
    https://dx.doi.org/10.1186/s13046-022-02522-y
    Type
    Article
    Language
    en
    ae974a485f413a2113503eed53cd6c53
    10.1186/s13046-022-02522-y
    Scopus Count
    Collections
    All Christie Publications

    entitlement

    Related articles

    • Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia.
    • Authors: Neelam S, Brooks MM, Cammarata PR
    • Issue date: 2013
    • Hypoxia stimulates CXCR4 signalling in ileal carcinoids.
    • Authors: Arvidsson Y, Bergström A, Arvidsson L, Kristiansson E, Ahlman H, Nilsson O
    • Issue date: 2010 Jun
    • The intriguing interplay between therapies targeting the epidermal growth factor receptor, the hypoxic microenvironment and hypoxia-inducible factors.
    • Authors: Wouters A, Boeckx C, Vermorken JB, Van den Weyngaert D, Peeters M, Lardon F
    • Issue date: 2013
    • HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs).
    • Authors: De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M
    • Issue date: 2013
    • Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20).
    • Authors: Burrows N, Cane G, Robson M, Gaude E, Howat WJ, Szlosarek PW, Pedley RB, Frezza C, Ashcroft M, Maxwell PH
    • Issue date: 2016 Mar 14
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.