Incorporating progesterone receptor expression into the PREDICT breast prognostic model
Name:
35933885.pdf
Size:
451.9Kb
Format:
PDF
Description:
Identified with Open Access button
Authors
Grootes, I.Keeman, R.
Blows, F. M.
Milne, R. L.
Giles, G. G.
Swerdlow, A. J.
Fasching, P. A.
Abubakar, M.
Andrulis, I. L.
Anton-Culver, H.
Beckmann, M. W.
Blomqvist, C.
Bojesen, S. E.
Bolla, M. K.
Bonanni, B.
Briceno, I.
Burwinkel, B.
Camp, N. J.
Castelao, J. E.
Choi, J. Y.
Clarke, C. L.
Couch, F. J.
Cox, A.
Cross, S. S.
Czene, K.
Devilee, P.
Dörk, T.
Dunning, A. M.
Dwek, M.
Easton, D. F.
Eccles, D. M.
Eriksson, M.
Ernst, K.
Evans, D Gareth R
Figueroa, J. D.
Fink, V.
Floris, G.
Fox, S.
Gabrielson, M.
Gago-Dominguez, M.
García-Sáenz, J. A.
González-Neira, A.
Haeberle, L.
Haiman, C. A.
Hall, P.
Hamann, U.
Harkness, E. F.
Hartman, M.
Hein, A.
Hooning, M. J.
Hou, M. F.
Howell, Sacha J
Ito, H.
Jakubowska, A.
Janni, W.
John, E. M.
Jung, A.
Kang, D.
Kristensen, V. N.
Kwong, A.
Lambrechts, D.
Li, J.
Lubiński, J.
Manoochehri, M.
Margolin, S.
Matsuo, K.
Taib, N. A. M.
Mulligan, A. M.
Nevanlinna, H.
Newman, W. G.
Offit, K.
Osorio, A.
Park, S. K.
Park-Simon, T. W.
Patel, A. V.
Presneau, N.
Pylkäs, K.
Rack, B.
Radice, P.
Rennert, G.
Romero, A.
Saloustros, E.
Sawyer, E. J.
Schneeweiss, A.
Schochter, F.
Schoemaker, M. J.
Shen, C. Y.
Shibli, R.
Sinn, P.
Tapper, W. J.
Tawfiq, E.
Teo, S. H.
Teras, L. R.
Torres, D.
Vachon, C. M.
van Deurzen, C. H. M.
Wendt, C.
Williams, J. A.
Winqvist, R.
Elwood, M.
Schmidt, M. K.
García-Closas, M.
Pharoah, P. D. P.
Affiliation
University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, CB1 8RN, UK.Issue Date
2022
Metadata
Show full item recordAbstract
Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2). Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance. Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted. Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration.Citation
Grootes I, Keeman R, Blows FM, Milne RL, Giles GG, Swerdlow AJ, et al. Incorporating progesterone receptor expression into the PREDICT breast prognostic model. European journal of cancer (Oxford, England : 1990). 2022 Aug 4;173:178-93. PubMed PMID: 35933885. Epub 2022/08/08. eng.Journal
European Journal of CancerDOI
10.1016/j.ejca.2022.06.011PubMed ID
35933885Additional Links
https://dx.doi.org/10.1016/j.ejca.2022.06.011Type
ArticleLanguage
enae974a485f413a2113503eed53cd6c53
10.1016/j.ejca.2022.06.011
Scopus Count
Collections
Related articles
- MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer.
- Authors: Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, Benes V, Schmidt S, Blake J, Ball G, Kerin MJ
- Issue date: 2009
- Development and validation of an extended Cox prognostic model for patients with ER/PR+ and HER2- breast cancer: a retrospective cohort study.
- Authors: Xie Y, Li X, Wu Y, Cui W, Liu Y
- Issue date: 2022 Oct 12
- Combined Estrogen Receptor and Progesterone Receptor Level Can Predict Survival Outcome in Human Epidermal Growth Factor Receptor 2-positive Early Breast Cancer.
- Authors: Chen M, Wu J, Liu D, Chen W, Lin C, Andriani L, Ding S, Huang O, He J, Chen X, Chen W, Li Y, Shen K, Zhu L
- Issue date: 2022 Feb
- Breast cancer biomarkers in clinical testing: analysis of a UK national external quality assessment scheme for immunocytochemistry and in situ hybridisation database containing results from 199 300 patients.
- Authors: Dodson A, Parry S, Ibrahim M, Bartlett JM, Pinder S, Dowsett M, Miller K
- Issue date: 2018 Oct
- Prognostic value of breast cancer subtypes, Ki-67 proliferation index, age, and pathologic tumor characteristics on breast cancer survival in Caucasian women.
- Authors: Ferguson NL, Bell J, Heidel R, Lee S, Vanmeter S, Duncan L, Munsey B, Panella T, Orucevic A
- Issue date: 2013 Jan-Feb