Incorporating progesterone receptor expression into the PREDICT breast prognostic model
Name:
35933885.pdf
Size:
451.9Kb
Format:
PDF
Description:
Identified with Open Access button
Authors
Grootes, I.Keeman, R.
Blows, F. M.
Milne, R. L.
Giles, G. G.
Swerdlow, A. J.
Fasching, P. A.
Abubakar, M.
Andrulis, I. L.
Anton-Culver, H.
Beckmann, M. W.
Blomqvist, C.
Bojesen, S. E.
Bolla, M. K.
Bonanni, B.
Briceno, I.
Burwinkel, B.
Camp, N. J.
Castelao, J. E.
Choi, J. Y.
Clarke, C. L.
Couch, F. J.
Cox, A.
Cross, S. S.
Czene, K.
Devilee, P.
Dörk, T.
Dunning, A. M.
Dwek, M.
Easton, D. F.
Eccles, D. M.
Eriksson, M.
Ernst, K.
Evans, D Gareth R
Figueroa, J. D.
Fink, V.
Floris, G.
Fox, S.
Gabrielson, M.
Gago-Dominguez, M.
García-Sáenz, J. A.
González-Neira, A.
Haeberle, L.
Haiman, C. A.
Hall, P.
Hamann, U.
Harkness, E. F.
Hartman, M.
Hein, A.
Hooning, M. J.
Hou, M. F.
Howell, Sacha J
Ito, H.
Jakubowska, A.
Janni, W.
John, E. M.
Jung, A.
Kang, D.
Kristensen, V. N.
Kwong, A.
Lambrechts, D.
Li, J.
Lubiński, J.
Manoochehri, M.
Margolin, S.
Matsuo, K.
Taib, N. A. M.
Mulligan, A. M.
Nevanlinna, H.
Newman, W. G.
Offit, K.
Osorio, A.
Park, S. K.
Park-Simon, T. W.
Patel, A. V.
Presneau, N.
Pylkäs, K.
Rack, B.
Radice, P.
Rennert, G.
Romero, A.
Saloustros, E.
Sawyer, E. J.
Schneeweiss, A.
Schochter, F.
Schoemaker, M. J.
Shen, C. Y.
Shibli, R.
Sinn, P.
Tapper, W. J.
Tawfiq, E.
Teo, S. H.
Teras, L. R.
Torres, D.
Vachon, C. M.
van Deurzen, C. H. M.
Wendt, C.
Williams, J. A.
Winqvist, R.
Elwood, M.
Schmidt, M. K.
García-Closas, M.
Pharoah, P. D. P.
Affiliation
University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, CB1 8RN, UK.Issue Date
2022
Metadata
Show full item recordAbstract
Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2). Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance. Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted. Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration.Citation
Grootes I, Keeman R, Blows FM, Milne RL, Giles GG, Swerdlow AJ, et al. Incorporating progesterone receptor expression into the PREDICT breast prognostic model. European journal of cancer (Oxford, England : 1990). 2022 Aug 4;173:178-93. PubMed PMID: 35933885. Epub 2022/08/08. eng.Journal
European Journal of CancerDOI
10.1016/j.ejca.2022.06.011PubMed ID
35933885Additional Links
https://dx.doi.org/10.1016/j.ejca.2022.06.011Type
ArticleLanguage
enae974a485f413a2113503eed53cd6c53
10.1016/j.ejca.2022.06.011
Scopus Count
Collections
Related articles
- Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
- Authors: Lee CC, Chen CW, Yen HK, Lin YP, Lai CY, Wang JL, Groot OQ, Janssen SJ, Schwab JH, Hsu FM, Lin WH
- Issue date: 2024 Dec 1
- Ceftazidime with avibactam for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model.
- Authors: Harnan S, Kearns B, Scope A, Schmitt L, Jankovic D, Hamilton J, Srivastava T, Hill H, Ku CC, Ren S, Rothery C, Bojke L, Sculpher M, Woods B
- Issue date: 2024 Oct
- Does the SORG Machine-learning Algorithm for Extremity Metastases Generalize to a Contemporary Cohort of Patients? Temporal Validation From 2016 to 2020.
- Authors: de Groot TM, Ramsey D, Groot OQ, Fourman M, Karhade AV, Twining PK, Berner EA, Fenn BP, Collins AK, Raskin K, Lozano S, Newman E, Ferrone M, Doornberg JN, Schwab JH
- Issue date: 2023 Dec 1
- Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.
- Authors: Kirtsoglou E, Simpson B, Salisbury L, Baraitser L
- Issue date: 2020
- Development and validation of prediction models for fetal growth restriction and birthweight: an individual participant data meta-analysis.
- Authors: Allotey J, Archer L, Coomar D, Snell KI, Smuk M, Oakey L, Haqnawaz S, Betrán AP, Chappell LC, Ganzevoort W, Gordijn S, Khalil A, Mol BW, Morris RK, Myers J, Papageorghiou AT, Thilaganathan B, Da Silva Costa F, Facchinetti F, Coomarasamy A, Ohkuchi A, Eskild A, Arenas Ramírez J, Galindo A, Herraiz I, Prefumo F, Saito S, Sletner L, Cecatti JG, Gabbay-Benziv R, Goffinet F, Baschat AA, Souza RT, Mone F, Farrar D, Heinonen S, Salvesen KÅ, Smits LJ, Bhattacharya S, Nagata C, Takeda S, van Gelder MM, Anggraini D, Yeo S, West J, Zamora J, Mistry H, Riley RD, Thangaratinam S
- Issue date: 2024 Aug