Improving workflow for adaptive proton therapy with predictive anatomical modelling: A proof of concept
Name:
35667573.pdf
Size:
1.500Mb
Format:
PDF
Description:
Identified with Open Access button
Affiliation
Department of Medical Physics and Biomedical Engineering, University College LondonIssue Date
2022
Metadata
Show full item recordAbstract
Purpose: To demonstrate predictive anatomical modelling for improving the clinical workflow of adaptive intensity-modulated proton therapy (IMPT) for head and neck cancer. Methods: 10 radiotherapy patients with nasopharyngeal cancer were included in this retrospective study. Each patient had a planning CT, weekly verification CTs during radiotherapy and predicted weekly CTs from our anatomical model. Predicted CTs were used to create predicted adaptive plans in advance with the aim of maintaining clinically acceptable dosimetry. Adaption was triggered when the increase in mean dose (Dmean) to the parotid glands exceeded 3 Gy(RBE). We compared the accumulated dose of two adaptive IMPT strategies: 1) Predicted plan adaption: One adaptive plan per patient was optimised on a predicted CT triggered by replan criteria. 2) Standard replan: One adaptive plan was created reactively in response to the triggering weekly CT. Results: Statistical analysis demonstrates that the accumulated dose differences between two adaptive strategies are not significant (p > 0.05) for CTVs and OARs. We observed no meaningful differences in D95 between the accumulated dose and the planned dose for the CTVs, with mean differences to the high-risk CTV of -1.20 %, -1.23 % and -1.25 % for no adaption, standard and predicted plan adaption, respectively. The accumulated parotid Dmean using predicted plan adaption is within 3 Gy(RBE) of the planned dose and 0.31 Gy(RBE) lower than the standard replan approach on average. Conclusion: Prediction-based replanning could potentially enable adaptive therapy to be delivered without treatment gaps or sub-optimal fractions, as can occur during a standard replanning strategy, though the benefit of using predicted plan adaption over the standard replan was not shown to be statistically significant with respect to accumulated dose in this study. Nonetheless, a predictive replan approach can offer advantages in improving clinical workflow efficiency.Citation
Zhang Y, Alshaikhi J, Amos RA, Lowe M, Tan W, Bär E, et al. Improving workflow for adaptive proton therapy with predictive anatomical modelling: A proof of concept. Vol. 173, Radiotherapy and Oncology. Elsevier BV; 2022. p. 93–101.Journal
Radiotherapy and OncologyDOI
10.1016/j.radonc.2022.05.036PubMed ID
35667573Additional Links
https://dx.doi.org/10.1016/j.radonc.2022.05.036Type
ArticleLanguage
enae974a485f413a2113503eed53cd6c53
10.1016/j.radonc.2022.05.036