APOBEC3 mutational signatures are associated with extensive and diverse genomic instability across multiple tumour types
Affiliation
Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UKIssue Date
2022
Metadata
Show full item recordAbstract
Background: The APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide 3) family of cytidine deaminases is responsible for two mutational signatures (SBS2 and SBS13) found in cancer genomes. APOBEC3 enzymes are activated in response to viral infection, and have been associated with increased mutation burden and TP53 mutation. In addition to this, it has been suggested that APOBEC3 activity may be responsible for mutations that do not fall into the classical APOBEC3 signatures (SBS2 and SBS13), through generation of double strand breaks.Previous work has mainly focused on the effects of APOBEC3 within individual tumour types using exome sequencing data. Here, we use whole genome sequencing data from 2451 primary tumours from 39 different tumour types in the Pan-Cancer Analysis of Whole Genomes (PCAWG) data set to investigate the relationship between APOBEC3 and genomic instability (GI). Results and conclusions: We found that the number of classical APOBEC3 signature mutations correlates with increased mutation burden across different tumour types. In addition, the number of APOBEC3 mutations is a significant predictor for six different measures of GI. Two GI measures (INDELs attributed to INDEL signatures ID6 and ID8) strongly suggest the occurrence and error prone repair of double strand breaks, and the relationship between APOBEC3 mutations and GI remains when SNVs attributed to kataegis are excluded.We provide evidence that supports a model of cancer genome evolution in which APOBEC3 acts as a causative factor in the development of diverse and widespread genomic instability through the generation of double strand breaks. This has important implications for treatment approaches for cancers that carry APOBEC3 mutations, and challenges the view that APOBECs only act opportunistically at sites of single stranded DNA.Citation
Jakobsdottir GM, Brewer DS, Cooper C, Green C, Wedge DC. APOBEC3 mutational signatures are associated with extensive and diverse genomic instability across multiple tumour types. Vol. 20, BMC Biology. Springer Science and Business Media LLC; 2022.Journal
BMC BiologyDOI
10.1186/s12915-022-01316-0PubMed ID
35597990Additional Links
https://dx.doi.org/10.1186/s12915-022-01316-0Type
ArticleLanguage
enae974a485f413a2113503eed53cd6c53
10.1186/s12915-022-01316-0
Scopus Count
Collections
Related articles
- Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA.
- Authors: Bergstrom EN, Luebeck J, Petljak M, Khandekar A, Barnes M, Zhang T, Steele CD, Pillay N, Landi MT, Bafna V, Mischel PS, Harris RS, Alexandrov LB
- Issue date: 2022 Feb
- Addressing the benefits of inhibiting APOBEC3-dependent mutagenesis in cancer.
- Authors: Petljak M, Green AM, Maciejowski J, Weitzman MD
- Issue date: 2022 Nov
- APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential.
- Authors: Butler K, Banday AR
- Issue date: 2023 Mar 28
- Mechanisms of APOBEC3 mutagenesis in human cancer cells.
- Authors: Petljak M, Dananberg A, Chu K, Bergstrom EN, Striepen J, von Morgen P, Chen Y, Shah H, Sale JE, Alexandrov LB, Stratton MR, Maciejowski J
- Issue date: 2022 Jul
- Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like family genes activation and regulation during tumorigenesis.
- Authors: Gao J, Choudhry H, Cao W
- Issue date: 2018 Aug