• Login
    View Item 
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsProfilesView

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Large scale evaluation of sarcopenia as prognostic factor in lung cancer radiotherapy patients

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Green, Andrew
    Van Herk, Marcel
    Vasquez Osorio, Eliana
    Weaver, Jamie M
    McWilliam, Alan
    Affiliation
    The University of Manchester c/o The Christie NHS Foundation Trust, Department 58- Radiotherapy Related Research, Manchester,
    Issue Date
    2020
    
    Metadata
    Show full item record
    Abstract
    Purpose or Objective Sarcopenia is a degenerative condition in which muscle wastes, that has been widely shown to be prognostic for patients treated with chemotherapy. Sarcopenia is also emerging as prognostic factor in radiotherapy. However, to date, cohorts analysed have been small due to the need for manual segmentations. In this work we analysed a very large cohort of non-small cell lung cancer (NSCLC) patients, using an Artifical Intelligence (AI) based automated segmentation to identify skeletal muscle at the third lumbar vertebral level (L3) and demonstrate the prognostic value of skeletal muscle density as a measure of sarcopenia. Material and Methods Whole body PET/CT images from a cohort of 549 NSCLC patients treated with standard fractionation (55 Gy in 20 fractions) were collected. The slices at the center of the L3 vertebral body, manually identified, were segmented using a previously developed AI tool. After visual inspection, the segmentations were used to compute the mean skeletal muscle density (SMD). SMD indirectly measures fat infiltration in the muscle capsule, a common feature of sarcopenia, with lower SMD indicating more fat. Known gender differences in skeletal muscle properties were accounted for by adding +7 HU to SMD for females to equate their median SMD with that of males. An optimal threshold in corrected SMD for survival difference was identified. Kaplan-Meier survival curves were produced for high- and low-SMD groups. A multivariate Cox regression model for overall survival accounting for log tumour size, gender, N stage, Performance Status (PS) and corrected SMD (as a continuous variable) was produced. Results Of the available 549 images, 473 were segmented successfully (figure 1). The majority of failures occurred in poor quality low-dose CT images; likely as the AI tool was trained on higher dose CT imaging. Figure 2a shows the Kaplan-Meier curves produced by splitting the cohort on corrected SMD of 17 HU, the identified optimal threshold for survival difference. A difference in median survival of 3 months is observed where patients with higher SMD do better. In the multivariate Cox analysis SMD remained significant (fig. 2b), with a hazard ratio of 0.99 per HU (p=0.02), indicating that denser muscle is advantageous. In our final model performance status (PS) was not significant. However, without SMD, PS was significant (data not shown). Conclusion We performed semi-automated segmentation for sarcopenia assessment in a very large cohort of lung cancer patients, and it was successful in 86% of the images. We are in the process of improving the AI tool and developing methods to utilize planning thoracic images as alternative. A statistically significant difference in survival was identified for NSCLC patients, where patients with an SMD >17 HU have an additional 3 months median survival. SMD remains significant in multivariate analysis with a hazard ratio of 0.99 per HU. Further work exploring the use of SMD as a quantitative alternative to the qualitative PS is in order.
    Citation
    Green A, Van Herk M, Osorio EV, Weaver J, McWilliam A. PD-0428: Large scale evaluation of sarcopenia as prognostic factor in lung cancer radiotherapy patients. Radiotherapy and Oncology . 2020 Nov;152:S234–5.
    Journal
    Radiotherapy and Oncology
    URI
    http://hdl.handle.net/10541/624287
    Type
    Meetings and Proceedings
    Language
    en
    Collections
    All Christie Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.