Show simple item record

dc.contributor.authorQi, Yaping
dc.contributor.authorWarmenhoven, John
dc.contributor.authorHenthorn, Nicholas
dc.contributor.authorIngram, Samuel
dc.contributor.authorXu, X. G.
dc.contributor.authorKirkby, Karen J
dc.contributor.authorMerchant, Michael J
dc.date.accessioned2021-07-19T10:28:39Z
dc.date.available2021-07-19T10:28:39Z
dc.date.issued2021en
dc.identifier.citationQi Y, Warmenhoven JW, Henthorn NT, Ingram SP, Xu XG, Kirkby KJ, et al. Mechanistic Modelling of Slow and Fast NHEJ DNA Repair Pathways Following Radiation for G0/G1 Normal Tissue Cells. Cancers. 2021 May 3;13(9):2202.en
dc.identifier.pmid34063683en
dc.identifier.doi10.3390/cancers13092202en
dc.identifier.urihttp://hdl.handle.net/10541/624066
dc.description.abstractMechanistic in silico models can provide insight into biological mechanisms and highlight uncertainties for experimental investigation. Radiation-induced double-strand breaks (DSBs) are known to be toxic lesions if not repaired correctly. Non-homologous end joining (NHEJ) is the major DSB-repair pathway available throughout the cell cycle and, recently, has been hypothesised to consist of a fast and slow component in G0/G1. The slow component has been shown to be resection-dependent, requiring the nuclease Artemis to function. However, the pathway is not yet fully understood. This study compares two hypothesised models, simulating the action of individual repair proteins on DSB ends in a step-by-step manner, enabling the modelling of both wild-type and protein-deficient cell systems. Performance is benchmarked against experimental data from 21 cell lines and 18 radiation qualities. A model where resection-dependent and independent pathways are entirely separated can only reproduce experimental repair kinetics with additional restraints on end motion and protein recruitment. However, a model where the pathways are entwined was found to effectively fit without needing additional mechanisms. It has been shown that DaMaRiS is a useful tool when analysing the connections between resection-dependent and independent NHEJ repair pathways and robustly matches with experimental results from several sources.en
dc.language.isoenen
dc.relation.urlhttps://dx.doi.org/10.3390/cancers13092202en
dc.titleMechanistic modelling of slow and fast NHEJ DNA repair pathways following radiation for G0/G1 normal tissue cellsen
dc.typeArticleen
dc.contributor.departmentSchool of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.en
dc.identifier.journalCancersen
dc.description.noteen]
refterms.dateFOA2021-07-26T13:07:44Z


Files in this item

Thumbnail
Name:
34063683.pdf
Size:
4.081Mb
Format:
PDF
Description:
From UNPAYWALL

This item appears in the following Collection(s)

Show simple item record