Show simple item record

dc.contributor.authorDavey, Angela
dc.contributor.authorvan Herk, Marcel
dc.contributor.authorFaivre-Finn, Corinne
dc.contributor.authorBrown, Sean
dc.contributor.authorMcWilliam, Alan
dc.date.accessioned2021-05-18T08:47:59Z
dc.date.available2021-05-18T08:47:59Z
dc.date.issued2021en
dc.identifier.citationDavey A, van Herk M, Faivre-Finn C, Brown S, McWilliam A. Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy. Phys Med Biol. 2021 Apr 21en
dc.identifier.pmid33882470en
dc.identifier.doi10.1088/1361-6560/abfa34en
dc.identifier.urihttp://hdl.handle.net/10541/623977
dc.description.abstractPurpose: 4D-CT is routine imaging for lung cancer patients treated with stereotactic body radiotherapy. No studies have investigated optimal 4D phase selection for radiomics. We aim to determine how phase data should be used to identify prognostic biomarkers for distant failure, and test whether stability assessment is required. A phase selection approach will be developed to aid studies with different 4D protocols, and account for patient differences. Methods: 186 features were extracted from the tumour and peritumour on all phases for 258 patients. Feature values were selected from phase features using four methods: A) mean across phases, B) median across phases, C) 50% phase, and D) the most stable phase (closest in value to two neighbours), coined personalised selection. Four levels of stability assessment were also analysed, with inclusion of: 1) all features, 2) stable features across all phases, 3) stable features across phase and neighbour phases, and 4) features averaged over neighbour phases. Clinical-radiomics models were built for twelve combinations of feature type and assessment method. Model performance was assessed by concordance index and fraction of new information from radiomic features. Results: The most stable phase spanned the whole range but was most often near exhale. All radiomic signatures provided new information for distant failure prediction. The personalised model had the highest concordance index (0.77), and 58% of new information was provided by radiomic features when no stability assessment was performed. Conclusion: The most stable phase varies per-patient and selecting this improves model performance compared to standard methods. We advise the single most stable phase should be determined by minimising feature differences to neighbour phases. Stability assessment over all phases decreases performance by excessively removing features. Instead, averaging of neighbour phases should be used when stability is of concern. The models suggest that higher peritumoural intensity predicts distant failure.en
dc.language.isoenen
dc.relation.urlhttps://dx.doi.org/10.1088/1361-6560/abfa34en
dc.titleOptimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapyen
dc.typeArticleen
dc.contributor.departmentDivision of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchesteen
dc.identifier.journalPhysics in Medicine and Biologyen
dc.description.noteen


This item appears in the following Collection(s)

Show simple item record