Show simple item record

dc.contributor.authorOrtíz, C.
dc.contributor.authorMoraca, F.
dc.contributor.authorLaverriere, M.
dc.contributor.authorJordan, Allan M
dc.contributor.authorHamilton, Niall M
dc.contributor.authorComini, M. A.
dc.date.accessioned2021-03-08T06:18:51Z
dc.date.available2021-03-08T06:18:51Z
dc.date.issued2021en
dc.identifier.citationOrtiz C, Moraca F, Laverriere M, Jordan A, Hamilton N, Comini MA. Glucose 6-Phosphate Dehydrogenase from Trypanosomes: Selectivity for Steroids and Chemical Validation in Bloodstream Trypanosoma brucei. Molecules. 2021;26(2).en
dc.identifier.pmid33445584en
dc.identifier.doi10.3390/molecules26020358en
dc.identifier.urihttp://hdl.handle.net/10541/623805
dc.description.abstractGlucose 6-phosphate dehydrogenase (G6PDH) fulfills an essential role in cell physiology by catalyzing the production of NADPH+ and of a precursor for the de novo synthesis of ribose 5-phosphate. In trypanosomatids, G6PDH is essential for in vitro proliferation, antioxidant defense and, thereby, drug resistance mechanisms. So far, 16α-brominated epiandrosterone represents the most potent hit targeting trypanosomal G6PDH. Here, we extended the investigations on this important drug target and its inhibition by using a small subset of androstane derivatives. In Trypanosoma cruzi, immunofluorescence revealed a cytoplasmic distribution of G6PDH and the absence of signal in major organelles. Cytochemical assays confirmed parasitic G6PDH as the molecular target of epiandrosterone. Structure-activity analysis for a set of new (dehydro)epiandrosterone derivatives revealed that bromination at position 16α of the cyclopentane moiety yielded more potent T. cruzi G6PDH inhibitors than the corresponding β-substituted analogues. For the 16α brominated compounds, the inclusion of an acetoxy group at position 3 either proved detrimental or enhanced the activity of the epiandrosterone or the dehydroepiandrosterone derivatives, respectively. Most derivatives presented single digit μM EC50 against infective T. brucei and the killing mechanism involved an early thiol-redox unbalance. This data suggests that infective African trypanosomes lack efficient NADPH+-synthesizing pathways, beyond the Pentose Phosphate, to maintain thiol-redox homeostasis.en
dc.language.isoenen
dc.relation.urlhttps://dx.doi.org/10.3390/molecules26020358en
dc.titleGlucose 6-phosphate dehydrogenase from trypanosomes: selectivity for steroids and chemical validation in bloodstream trypanosoma bruceien
dc.typeArticleen
dc.contributor.departmentRedox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.en
dc.identifier.journalMoleculesen
dc.description.noteen]
refterms.dateFOA2021-03-08T15:25:02Z


Files in this item

Thumbnail
Name:
33445584.pdf
Size:
3.543Mb
Format:
PDF
Description:
From UNPAYWALL

This item appears in the following Collection(s)

Show simple item record