Show simple item record

dc.contributor.authorHenthorn, Nicholas
dc.contributor.authorWarmenhoven, J
dc.contributor.authorSotiropoulos, M
dc.contributor.authorAitkenhead, Adam H
dc.contributor.authorSmith, E
dc.contributor.authorIngram, S
dc.contributor.authorKirkby, Norman
dc.contributor.authorChadwick, A
dc.contributor.authorBurnet, Neil G
dc.contributor.authorMackay, Ranald I
dc.contributor.authorKirkby, Karen J
dc.contributor.authorMerchant, Michael J
dc.date.accessioned2019-04-29T09:48:56Z
dc.date.available2019-04-29T09:48:56Z
dc.date.issued2019en
dc.identifier.citationHenthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, et al. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv. 2019;9(12):6845-58.en
dc.identifier.doi10.1039/C8RA10168Jen
dc.identifier.urihttp://hdl.handle.net/10541/621755
dc.description.abstractRelative Biological Effectiveness (RBE), the ratio of doses between radiation modalities to produce the same biological endpoint, is a controversial and important topic in proton therapy. A number of phenomenological models incorporate variable RBE as a function of Linear Energy Transfer (LET), though a lack of mechanistic description limits their applicability. In this work we take a different approach, using a track structure model employing fundamental physics and chemistry to make predictions of proton and photon induced DNA damage, the first step in the mechanism of radiation-induced cell death. We apply this model to a proton therapy clinical case showing, for the first time, predictions of DNA damage on a patient treatment plan. Our model predictions are for an idealised cell and are applied to an ependymoma case, at this stage without any cell specific parameters. By comparing to similar predictions for photons, we present a voxel-wise RBE of DNA damage complexity. This RBE of damage complexity shows similar trends to the expected RBE for cell kill, implying that damage complexity is an important factor in DNA repair and therefore biological effect.en
dc.language.isoenen
dc.relation.urlhttps://dx.doi.org/10.1039/C8RA10168Jen
dc.titleClinically relevant nanodosimetric simulation of DNA damage complexity from photons and protonsen
dc.typeMeetings and Proceedingsen
dc.contributor.departmentDivision of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UKen
dc.identifier.journalRSC Advancesen
dc.description.noteen]
refterms.dateFOA2019-04-29T17:08:46Z


Files in this item

Thumbnail
Name:
c8ra10168j.pdf
Size:
1.622Mb
Format:
PDF
Description:
Open Access, Full Text Article

This item appears in the following Collection(s)

Show simple item record