• Login
    View Item 
    •   Home
    • The Manchester Institute Cancer Research UK
    • All Paterson Institute for Cancer Research
    • View Item
    •   Home
    • The Manchester Institute Cancer Research UK
    • All Paterson Institute for Cancer Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsProfilesView

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expressed by the SYN1 and CaMKII promoters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Lee, SY
    George, JH
    Nagel, DA
    Ye, H
    Kueberuwa, Gray
    Seymour, LW
    Affiliation
    Department of Oncology, Old Road Campus Research Building, University of Oxford, UK
    Issue Date
    2018
    
    Metadata
    Show full item record
    Abstract
    Development of optogenetically controllable human neural network model in three-dimensional (3D) can provide an investigative system that is physiologically relevant or mimic to the human brain. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cells (hiPSCs) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells was obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of sub-populations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for hPSCs and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
    Citation
    Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expressed by the SYN1 and CaMKII promoters. J Tissue Eng Regen Med. 2018 Dec 14.
    Journal
    Journal of Tissue Engineering and Regenerative Medicine
    URI
    http://hdl.handle.net/10541/621491
    DOI
    10.1002/term.2786
    PubMed ID
    30550638
    Additional Links
    https://dx.doi.org/10.1002/term.2786
    Type
    Article
    Language
    en
    ae974a485f413a2113503eed53cd6c53
    10.1002/term.2786
    Scopus Count
    Collections
    All Paterson Institute for Cancer Research

    entitlement

    Related articles

    • Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation.
    • Authors: Ryu J, Vincent PFY, Ziogas NK, Xu L, Sadeghpour S, Curtin J, Alexandris AS, Stewart N, Sima R, du Lac S, Glowatzki E, Koliatsos VE
    • Issue date: 2019
    • Optogenetically Engineered Neurons Differentiated from Human SH-SY5Y Cells Survived and Expressed ChR2 in 3D Hydrogel.
    • Authors: Lee SY, George J, Nagel D, Ye H, Seymour L
    • Issue date: 2022 Jun 28
    • Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.
    • Authors: Piñol RA, Bateman R, Mendelowitz D
    • Issue date: 2012 Sep 30
    • 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.
    • Authors: Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DHW, Lako M
    • Issue date: 2017 Feb
    • Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation.
    • Authors: Moxon SR, Corbett NJ, Fisher K, Potjewyd G, Domingos M, Hooper NM
    • Issue date: 2019 Nov
    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.