Modelling direct DNA damage for gold nanoparticle enhanced proton therapy.
Affiliation
Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UKIssue Date
2017-11-30
Metadata
Show full item recordAbstract
Gold nanoparticles have been proven as potential radiosensitizer when combined with protons. Initially the radiosensitization effect was attributed to the physical interactions of radiation with the gold and the production of secondary electrons that induce DNA damage. However, emerging data challenge this hypothesis, supporting the existence of alternative or supplementary radiosensitization mechanisms. In this work we incorporate a realistic cell model with detailed DNA geometry and a realistic gold nanoparticle biodistribution based on experimental data. The DNA single and double strand breaks, and damage complexity are counted under various scenarios of different gold nanoparticle size, biodistribution and concentration, and proton energy. The locality of the effect, i.e. the existence of higher damage at a location close to the gold distribution, is also addressed by investigating the DNA damage at a chromosomal territory. In all the cases we do not observe any significant increase in the single/double strand break yield or damage complexity in the presence of gold nanoparticles under proton irradiation; nor there is a locality to the effect. Our results show for the first time that the physical interactions of protons with the gold nanoparticles should not be considered directly responsible for the observed radiosensitization effect. The model used only accounts for DNA damage from direct interactions, whilst considering the indirect effect, and it is possible the radiosensitization effect to be due to other physical effects, although we consider that possibility unlikely. Our conclusion suggests that other mechanisms might have greater contribution to the radiosensitization effect and further investigation should be conducted.Citation
Modelling direct DNA damage for gold nanoparticle enhanced proton therapy. 2017, 9(46): 18413-18422 NanoscaleJournal
NanoscaleDOI
10.1039/c7nr07310kPubMed ID
29148554Type
ArticleLanguage
enISSN
2040-3372ae974a485f413a2113503eed53cd6c53
10.1039/c7nr07310k
Scopus Count
Collections
Related articles
- Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.
- Authors: Liu R, Zhao T, Zhao X, Reynoso FJ
- Issue date: 2019 Nov
- Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.
- Authors: Peukert D, Kempson I, Douglass M, Bezak E
- Issue date: 2020 Feb
- Quantification of gold nanoparticle photon radiosensitization from direct and indirect effects using a complete human genome single cell model based on Geant4.
- Authors: Zhao X, Liu R, Zhao T, Reynoso FJ
- Issue date: 2021 Dec
- Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation.
- Authors: Lin Y, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J
- Issue date: 2014 Dec 21
- Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models.
- Authors: Engels E, Bakr S, Bolst D, Sakata D, Li N, Lazarakis P, McMahon SJ, Ivanchenko V, Rosenfeld AB, Incerti S, Kyriakou I, Emfietzoglou D, Lerch MLF, Tehei M, Corde S, Guatelli S
- Issue date: 2020 Nov 17