• 21st L H Gray Conference: the radiobiology/radiation protection interface.

      West, Catharine M L; Martin, C J; Sutton, D G; Wright, Eric G; Academic Department of Radiation Oncology, University of Manchester, Christie Hospital, UK. catharine.west@manchester.ac.uk (2009-05)
      The 21st L H Gray Conference, organised by the L H Gray Trust with the Society for Radiological Protection, brought together international experts in radiobiology, epidemiology and risk assessment, and scientists involved in diagnostic and therapeutic radiation exposure. The meeting - held in Edinburgh, Scotland, on 4-6 June 2008 - aimed to raise awareness, educate and share knowledge of important issues in radiation protection. A distinguished group of speakers discussed topics that included (i) non-targeted effects of radiation, (ii) exposure to high natural background radiation, (iii) non-cancer effects in Japanese bomb survivors, (iv) lessons learnt from Chernobyl, (v) radiation in the workplace, (vi) biokinetic modelling, (vii) uncertainties in risk estimation, (viii) issues in diagnostic medical exposures, (ix) lessons leant from the polonium-210 incidence and (x) how the radiobiology/radiation oncology community is needed to help society prepare for potential future acts of radiation terrorism. The conference highlighted the importance, relevance and topicality of radiobiology today.
    • An analysis of breast motion using high-frequency, dense surface points captured by an optical sensor during radiotherapy treatment delivery.

      Price, Gareth J; Sharrock, Phillip J; Marchant, Thomas E; Parkhurst, J M; Burton, D; Jain, Pooja; Price, Patricia M; Moore, Christopher J; North Western Medical Physics, The Christie NHS Foundation Trust, Manchester, UK. Gareth.Price@physics.cr.man.ac.uk (2009-11-07)
      Patient motion is an important factor affecting the quality of external beam radiotherapy in breast patients. We analyse the motion of a dense set of surface points on breast patients throughout their treatment schedule to assess the magnitude and stability of motion, in particular, with respect to breast volume. We use an optical sensor to measure the surface motion of 13 breast cancer patients. Patients were divided into two cohorts dependent upon breast volume. Measurements were made during radiotherapy treatment beam delivery for an average of 12 fractions per patient (total 158 datasets). The motion of each surface point is parameterized in terms of its period, amplitude and relative phase. Inter-comparison of the motion parameters across treatment schedules and between patients is made through the creation of corresponding regions on the breast surfaces. The motion period is spatially uniform and is similar in both patient groups (mean 4 s), with the small volume cohort exhibiting greater inter-fraction period variability. The mean motion amplitude is also similar in both groups with a range between 2 mm and 4 mm and an inter-fraction variability generally less than 1 mm. There is a phase lag of up to 0.4 s across the breast, led by the sternum. Breast patient motion is reasonably stable between and during treatment fractions, with the large volume cohort exhibiting greater repeatability than the small volume one.
    • Assessment of bladder motion for clinical radiotherapy practice using cine-magnetic resonance imaging.

      McBain, Catherine A; Khoo, Vincent S; Buckley, David L; Sykes, Jonathan S; Green, Melanie M; Cowan, Richard A; Hutchinson, Charles E; Moore, Christopher J; Price, Patricia M; Academic Department of Radiation Oncology, The University of Manchester, Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester, United Kingdom. (2009-11-01)
      PURPOSE: Organ motion is recognized as the principal source of inaccuracy in bladder radiotherapy (RT), but there is currently little information on intrafraction bladder motion. METHODS AND MATERIALS: We used cine-magnetic resonance imaging (cine-MRI) to study bladder motion relevant to intrafraction RT delivery. On two occasions, a 28 minute cine-MRI sequence was acquired from 10 bladder cancer patients and 5 control participants immediately after bladder emptying, after abstinence from drinking for the preceding hour. From the resulting cine sequences, bladder motion was subjectively assessed. To quantify bladder motion, the bladder was contoured in imaging volume sets at 0, 14, and 28 min to measure changes to bladder volumes, wall displacements, and center of gravity (COG) over time. RESULTS: The dominant source of bladder motion during imaging was bladder filling (up to 101% volume increase); rectal and small bowel movements were transient, with minimal impact. Bladder volume changes were similar for all participants. However for bladder cancer patients, wall displacements were larger (up to 58 mm), less symmetrical, and more variable compared with nondiseased control bladders. CONCLUSIONS: Significant and individualized intrafraction bladder wall displacements may occur during bladder RT delivery. This important source of inaccuracy should be incorporated into treatment planning and verification.
    • Biodistribution, pharmacokinetics and metabolism of interleukin-1 receptor antagonist (IL-1RA) using [¹⁸F]-IL1RA and PET imaging in rats.

      Cawthorne, Christopher; Prenant, C; Smigova, A; Julyan, Peter J; Maroy, R; Herholz, K; Rothwell, N; Boutin, H; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK. (2011-02)
      Positron emission tomography (PET) has the potential to improve our understanding of the preclinical pharmacokinetics and metabolism of therapeutic agents, and is easily translated to clinical studies in humans. However, studies involving proteins radiolabelled with clinically relevant PET isotopes are currently limited. Here we illustrate the potential of PET imaging in a preclinical study of the biodistribution and metabolism of ¹⁸F-labelled IL-1 receptor antagonist ([¹⁸F]IL-1RA) using a novel [¹⁸F]-radiolabelling technique.
    • Blood flow and Vd (water): both biomarkers required for interpreting the effects of vascular targeting agents on tumor and normal tissue.

      Kötz, Barbara; West, Catharine M L; Saleem, Azeem; Jones, Terry; Price, Patricia M; Academic Department of Radiation Oncology, The University of Manchester, Manchester, UK. (2009-02)
      Positron emission tomography studies with oxygen-15-labeled water provide in vivo quantitative tissue perfusion variables-blood flow and fractional volume of distribution of water [V(d) (water)]. To investigate the relationship between perfusion variables and the effect of vascular-targeting agents on vasculature, we measured tissue perfusion in tumors, spleen, kidney, and liver before and after treatment with combretastatin-A4-phosphate, a combination of nicotinamide and carbogen (N/C), and interferon (IFN). We observed that mean tumor blood flow and V(d) (water) was lower than in kidney, liver, and spleen at baseline. Blood flow and V(d) (water) were related in tumor (r = 0.62; P = 0.004) at baseline, but not in other normal tissues evaluated, where minimal variations in V(d) (water) were observed over a wide range of blood flow. Despite the relationship between blood flow and V(d) (water) in tumors before intervention, vascular-targeting agent-induced changes in these perfusion variables were not correlated. In contrast, changes in blood flow and V(d) (water) correlated in kidney and spleen after N/C and in kidney after combretastatin-A4-phosphate. The close relation between blood flow and V(d) (water) in tumors but not normal tissue may reflect barriers to fluid exchange in tumors because of necrosis and/or increased interstitial fluid pressure and underlies the importance and interdependence of these positron emission tomography perfusion variables under these conditions. As blood flow and V(d) (water) signify different aspects of tissue perfusion, the differential effects of interventions on both variables, flow and V(d) (water), should therefore be reported in future studies.
    • Chemoradiotherapy for locally advanced pancreatic cancer: a radiotherapy dose escalation and organ motion study.

      Henry, Ann M; Ryder, W David J; Moore, Christopher J; Sherlock, David J; Geh, J I; Dunn, P; Price, Patricia M; Academic Department of Radiation Oncology, The University of Manchester, Department of Medical Statistics, Christie Hospital NHS Trust, Manchester, UK. (2008-09)
      AIMS: To determine the efficacy of radiation dose escalation and to examine organ motion during conformal radiotherapy for locally advanced pancreatic cancer. MATERIALS AND METHODS: Thirty-nine patients who were consecutively treated with chemoradiotherapy were studied. Fifteen patients, treated from 1993 to 1997, received 50 Gy in 20 fractions (group I). Twenty-four patients, treated from 1997 to 2003, received an escalated dose of 55 Gy in 25 fractions (group II). Intra-fraction pancreatic tumour motion was assessed in three patients using megavoltage movies during radiation delivery to track implanted radio-opaque markers. RESULTS: Improved survival rates were seen in latterly treated group II patients (P=0.083), who received escalated radiotherapy to smaller treatment volumes due to advances in verification. Worse toxicity effects (World Health Organization grade 3-4) were reported by some patients (<10%), but treatment compliance was similar in both groups, indicating equivalent tolerance. Substantial intra-fraction tumour displacement due to respiratory motion was observed: this was greatest in the superior/inferior (mean=6.6 mm) and anterior/posterior (mean=4.75 mm) directions. Lateral displacements were small (<2 mm). CONCLUSIONS: Dose escalation is feasible in pancreatic cancer, particularly when combined with a reduction in irradiated volume, and enhanced efficacy is indicated. Large, globally applied margins to compensate for pancreatic tumour motion during radiotherapy may be inappropriate. Strategies to reduce respiratory motion, and/or the application of image-guided techniques that incorporate individual patients' respiratory motion into radiotherapy planning and delivery, will probably improve pancreatic radiotherapy.
    • Clinical impact of tumour involvement of the anastomotic doughnut in oesophagogastric cancer surgery.

      Sillah, Abdul Karim; Griffiths, Ewen A; Pritchard, S A; Swindell, Ric; West, Catharine M L; Page, Richard; Welch, I M; Department of Gastrointestinal Surgery, University Hospital of South Manchester NHS Foundation Trust, UK. (2009-04)
      INTRODUCTION: Published colorectal cancer surgery data suggest no role for the analysis of the anastomotic doughnuts following anterior resection. The usefulness of routine histological analysis of the upper gastrointestinal doughnut is not clear. Our study assessed the impact of cancer involvement of the doughnut on clinical practice. Factors associated with doughnut involvement and the effect on patients' survival were also analysed. PATIENTS AND METHODS: The clinicopathological details of 462 patients who underwent potentially curative oesophagogastrectomy for cancer with a stapled anastomosis between 1994 and 2006 in two specialist centres were retrospectively analysed. Univariate, multivariate and survival analyses were carried out. RESULTS: Approximately 5% of doughnuts (22 of 462) were histologically involved with cancer. Microscopic involvement of the proximal resection margin, local lymph node metastasis and lymphatic invasion within the main resected specimen were independently associated with doughnut involvement (all P < 0.05). However, these three factors taken together failed to predict doughnut involvement. Doughnut involvement was an independent adverse prognostic factor for overall survival (P = 0.0013). CONCLUSIONS: In contrast to findings in colorectal surgery, doughnut involvement with cancer appears to have useful prognostic information following oesophagogastrectomy. Routine histological analysis of upper gastrointestinal doughnuts is justified. Doughnut involvement could potentially strengthen the indications for adjuvant therapy in the future.
    • Dynamic contrast-enhanced MRI for prostate cancer localization.

      Jackson, Andrew; Reinsberg, S A; Sohaib, S A; Charles-Edwards, E M; Jhavar, S; Christmas, T J; Thompson, A C; Bailey, M J; Corbishley, C M; Fisher, C; et al. (2009-02)
      Radiotherapy dose escalation improves tumour control in prostate cancer but with increased toxicity. Boosting focal tumour only may allow dose escalation with acceptable toxicity. Intensity-modulated radiotherapy can deliver this, but visualization of the tumour remains limiting. CT or conventional MRI techniques are poor at localizing tumour, but dynamic contrast-enhanced MRI (DCE-MRI) may be superior. 18 patients with prostate cancer had T(2) weighted (T2W) and DCE-MRI prior to prostatectomy. The prostate was sectioned meticulously so as to achieve accurate correlation between imaging and pathology. The accuracy of DCE-MRI for cancer detection was calculated by a pixel-by-pixel correlation of quantitative DCE-MRI parameter maps and pathology. In addition, a radiologist interpreted the DCE-MRI and T2W images. The location of tumour on imaging was compared with histology, and the accuracy of DCE-MRI and T2W images was then compared. Pixel-by-pixel comparison of quantitative parameter maps showed a significant difference between the benign peripheral zone and tumour for the parameters K(trans), v(e) and k(ep). Calculation of areas under the receiver operating characteristic curve showed that the pharmacokinetic parameters were only "fair" discriminators between cancer and benign gland. Interpretation of DCE-MRI and T2W images by a radiologist showed DCE-MRI to be more sensitive than T2W images for tumour localization (50% vs 21%; p = 0.006) and similarly specific (85% vs 81%; p = 0.593). The superior sensitivity of DCE-MRI compared with T2W images, together with its high specificity, is arguably sufficient for its use in guiding radiotherapy boosts in prostate cancer.
    • Early clinical evaluation of a novel three-dimensional structure delineation software tool (SCULPTER) for radiotherapy treatment planning.

      McBain, Catherine A; Moore, Christopher J; Green, Matthew M L; Price, Gareth J; Sykes, Jonathan R; Amer, Aminah; Khoo, Vincent S; Price, Patricia M; Academic Department of Radiation Oncology, The University of Manchester, Manchester, UK. (2008-08)
      Modern radiotherapy treatment planning (RTP) necessitates increased delineation of target volumes and organs at risk. Conventional manual delineation is a laborious, time-consuming and subjective process. It is prone to inconsistency and variability, but has the potential to be improved using automated segmentation algorithms. We carried out a pilot clinical evaluation of SCULPTER (Structure Creation Using Limited Point Topology Evidence in Radiotherapy) - a novel prototype software tool designed to improve structure delineation for RTP. Anonymized MR and CT image datasets from patients who underwent radiotherapy for bladder or prostate cancer were studied. An experienced radiation oncologist used manual and SCULPTER-assisted methods to create clinically acceptable organ delineations. SCULPTER was also tested by four other RTP professionals. Resulting contours were compared by qualitative inspection and quantitatively by using the volumes of the structures delineated and the time taken for completion. The SCULPTER tool was easy to apply to both MR and CT images and diverse anatomical sites. SCULPTER delineations closely reproduced manual contours with no significant volume differences detected, but SCULPTER delineations were significantly quicker (p<0.05) in most cases. In conclusion, clinical application of SCULPTER resulted in rapid and simple organ delineations with equivalent accuracy to manual methods, demonstrating proof-of-principle of the SCULPTER system and supporting its potential utility in RTP.
    • Early tumor drug pharmacokinetics is influenced by tumor perfusion but not plasma drug exposure.

      Saleem, Azeem; Price, Patricia M; Academic Department of Radiation Oncology, The Christie Hospital NHS Foundation Trust, Manchester. azeem.saleem@manchester.ac.uk (2008-12-15)
      PURPOSE: Pharmacokinetic parameters derived from plasma sampling are used as a surrogate of tumor pharmacokinetics. However, pharmacokinetics-modulating strategies do not always result in increased therapeutic efficacy. Nonsurrogacy of plasma kinetics may be due to tissue-specific factors such as tumor perfusion. EXPERIMENTAL DESIGN: To assess the impact of tumor perfusion and plasma drug exposure on tumor pharmacokinetics, positron emission tomography studies were done with oxygen-15 radiolabeled water in 12 patients, with 6 patients undergoing positron emission tomography studies with carbon-11 radiolabeled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide and the other 6 with fluorine-18 radiolabeled 5-fluorouracil. RESULTS: We found that tumor blood flow (mL blood/mL tissue/minute) was significantly correlated to early tumor radiotracer uptake between 4 and 6 minutes [standard uptake value (SUV)4-6; rho = 0.79; P = 0.002], tumor radiotracer exposure over 10 minutes [area under the time-activity curve (AUC)0-10; predominantly parent drug; rho = 0.86; P < 0.001], and tumor radiotracer exposure over 60 minutes (AUC0-60; predominantly radiolabeled metabolites; rho = 0.80; P = 0.002). Similarly, fractional volume of distribution of radiolabeled water in tumor (Vd) was significantly correlated with SUV4-6 (rho = 0.80; P = 0.002), AUC0-10 (rho = 0.85; P < 0.001), and AUC0-60 (rho = 0.66; P = 0.02). In contrast, no correlation was observed between plasma drug or total radiotracer exposure over 60 minutes and tumor drug uptake or exposure. Tumor blood flow was significantly correlated to Vd (rho = 0.69; P = 0.014), underlying the interdependence of tumor perfusion and Vd. CONCLUSIONS: Tumor perfusion is a key factor that influences tumor drug uptake/exposure. Tumor vasculature-targeting strategies may thus result in improved tumor drug exposure and therefore drug efficacy.
    • An efficient synthetic strategy for obtaining 4-methoxy carbon isotope labeled combretastatin A-4 phosphate and other Z-combretastatins.

      Pettit, George R; Minardi, Mathew D; Hogan, Fiona; Price, Patricia M; Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. bpettit@asu.edu (2010-03-26)
      Human cancer and other clinical trials under development employing combretastatin A-4 phosphate (1b, CA4P) should benefit from the availability of a [(11)C]-labeled derivative for positron emission tomography (PET). In order to obtain a suitable precursor for addition of a [(11)C]methyl group at the penultimate step, several new synthetic pathways to CA4P were evaluated. Geometrical isomerization (Z to E) proved to be a challenge, but it was overcome by development of a new CA4P synthesis suitable for 4-methoxy isotope labeling.
    • Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators

      Farnell, Damian J J; Hatfield, F N; Knox, P; Reakes, M; Spencer, S; Parry, D; Harding, S P; Academic Department of Radiation Oncology, Division of Cancer Studies, Faculty of Medical and Human Science, University of Manchester, c/o Christie Hospital NHS Foundation Trust, Manchester M20 4BX UK (2008)
    • Epidermal growth factor receptor-targeted therapy.

      West, Catharine M L; Joseph, L; Bhana, Sara; Academic Radiation Oncology, The University of Manchester, Christie Hospital, Manchester M20 4BX, UK. catharine.west@manchester.ac.uk (2008-10)
      High epidermal growth factor receptor (EGFR) expression is a feature of human tumours and is an adverse prognostic factor for radiotherapy outcome. High expression is associated with benefit from accelerated radiotherapy in patients with head and neck squamous cell carcinoma. Anti-EGFR strategies potentiate the effects of radiotherapy and the inhibition of deoxyribonucleic acid repair appears to be important amongst a wide range of mechanisms, which include effects on angiogenesis, differentiation and the immunological response. There is considerable interest in exploring combined modality therapies involving radiation and EGFR antagonists for the curative treatment of cancer patients. Important issues in designing new trials are to investigate optimal scheduling and to establish biobanks to develop biomarkers for future patient selection.
    • Evaluation of larynx-sparing techniques with IMRT when treating the head and neck.

      Webster, Gareth J; Rowbottom, Carl G; Ho, Kean F; Slevin, Nicholas J; Mackay, Ranald I; North Western Medical Physics, Christie Hospital National Health Service Foundation Trust, Manchester, UK. Gareth.Webster@physics.cr.man.ac.uk (2008-10-01)
      PURPOSE: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. METHODS AND MATERIALS: A total of 13 oropharyngeal cancer whole-field IMRT plans were planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. RESULTS: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. CONCLUSION: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.
    • Exon-array profiling unlocks clinically and biologically relevant gene signatures from formalin-fixed paraffin-embedded tumour samples.

      Hall, J S; Leong, Hui Sun; Armenoult, L S C; Newton, G E; Valentine, Helen R; Irlam, Joely J; Möller-Levet, Carla S; Sikand, Kanwal A; Pepper, Stuart D; Miller, Crispin J; et al. (2011-03-15)
      Degradation and chemical modification of RNA in formalin-fixed paraffin-embedded (FFPE) samples hamper their use in expression profiling studies. This study aimed to show that useful information can be obtained by Exon-array profiling archival FFPE tumour samples.
    • High-order coupled cluster method (CCM) calculations for quantum magnets with valence-bond ground states.

      Farnell, Damian J J; Academic Department of Radiation Oncology, Division of Cancer Studies, Faculty of Medical and Human Science, University of Manchester, c/o Christie Hospital NHS Foundation Trust, Manchester m20 4BX, UK (2009)
    • High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields.

      Farnell, Damian J J; Zinke, R; Schulenburg, J; Richter, J; Academic Department of Radiation Oncology, Faculty of Medical and Human Sciences, University of Manchester, c/o The Christie NHS Foundation Trust, Manchester M20 4BX, UK (2009)
    • Hypoxia-associated markers in gastric carcinogenesis and HIF-2alpha in gastric and gastro-oesophageal cancer prognosis.

      Griffiths, Ewen A; Pritchard, S A; McGrath, S M; Valentine, Helen R; Price, Patricia M; Welch, I M; West, Catharine M L; Academic Department of Radiation Oncology, School of Cancer & Imaging Sciences, The University of Manchester, Christie Hospital, Wilmslow Road, Withington, Manchester M20 4BX, UK. (2008-03-11)
      The study investigated hypoxia-associated markers (HIF-2alpha, Epo, Epo-R, Glut-1 and VEGF) along with Ki-67 in a gastric carcinogenesis model, and the prognostic significance of hypoxia-inducible factor (HIF)-2alpha in surgically treated gastro-oesophageal cancer. Protein expression was examined using immunohistochemistry on formalin-fixed, paraffin-embedded biopsies of normal mucosa (n=20), Helicobacter pylori-associated gastritis (n=24), intestinal metaplasia (n=24), dysplasia (n=12) and intestinal (n=19) and diffuse (n=21) adenocarcinoma. Relationships between HIF-2alpha expression and prognosis were assessed in resection specimens from 177 patients with gastric and gastro-oesophageal junction adenocarcinoma. Expression of all markers increased with progression along the gastric carcinogenesis sequence (P=0.0001). Hypoxia-inducible factor-2alpha was expressed in 63% of 177 resection specimens and at a high level in 44%. The median overall survival in patients with HIF-2alpha-expressing tumours was 22 (95% CI 18-26) months, whereas those with HIF-2alpha-negative tumours had a median survival of 37 (95% CI 29-44) months (P=0.015). Hypoxia-inducible factor-2alpha had no independent prognostic significance in multivariate analysis. In view of the lack of independent prognostic significance, HIF-2alpha has no role as a routine prognostic indicator. However, the high expression of HIF-2alpha suggests that it may be of value as a potential therapeutic target.
    • The hypoxia-selective cytotoxin NLCQ-1 (NSC 709257) controls metastatic disease when used as an adjuvant to radiotherapy.

      Lunt, S; Cawthorne, Christopher; Ali, M; Telfer, B; Babur, M; Smigova, A; Julyan, Peter J; Price, Patricia M; Stratford, I; Bloomer, W; et al. (2010-07-13)
      BACKGROUND: Metastases cause most cancer-related deaths. We investigated the use of hypoxia-selective cytotoxins as adjuvants to radiotherapy in the control of metastatic tumour growth. METHODS: The NLCQ-1, RB6145 and tirapazamine were assessed against the spontaneously metastasising KHT model. Subcutaneous KHT tumours (250 mm(3)) were irradiated with 25 Gy (single fraction) to control primary growth. Equitoxic drug treatments (NLCQ-1 (10 mg kg(-1)) once daily; RB6145 (75 mg kg(-1)) and tirapazamine (13 mg kg(-1)) twice daily) were administered 3-6 days post-radiotherapy when hypoxic cells were evident in lung micrometastases. Mice were culled when 50% of controls exhibited detrimental signs of lung metastases. RESULTS: In total, 95% of control mice presented with lung disease. This was significantly reduced by NLCQ-1 (33%; P=0.0002) and RB6145 (60%; P=0.02). Semi-quantitative grading of lung disease revealed a significant improvement with all treatments, with NLCQ-1 proving most efficacious (median grades: control, 4; NLCQ, 0 (P<0.0001); RB6145, 1 (P<0.001), tirapazamine, 3 (P=0.007)). Positron emission tomography (PET) was evaluated as a non-invasive means of assessing metastatic development. Primary and metastatic KHT tumours showed robust uptake of [(18)F]fluorodeoxyglucose ([(18)F]FDG). Metastatic burden discernable by [(18)F]FDG PET correlated well with macroscopic and histological lung analysis. CONCLUSION: The hypoxia-selective cytotoxin NLCQ-1 controls metastatic disease and may be a successful adjuvant to radiotherapy in the clinical setting.