• An analysis of breast motion using high-frequency, dense surface points captured by an optical sensor during radiotherapy treatment delivery.

      Price, Gareth J; Sharrock, Phillip J; Marchant, Thomas E; Parkhurst, J M; Burton, D; Jain, Pooja; Price, Patricia M; Moore, Christopher J; North Western Medical Physics, The Christie NHS Foundation Trust, Manchester, UK. Gareth.Price@physics.cr.man.ac.uk (2009-11-07)
      Patient motion is an important factor affecting the quality of external beam radiotherapy in breast patients. We analyse the motion of a dense set of surface points on breast patients throughout their treatment schedule to assess the magnitude and stability of motion, in particular, with respect to breast volume. We use an optical sensor to measure the surface motion of 13 breast cancer patients. Patients were divided into two cohorts dependent upon breast volume. Measurements were made during radiotherapy treatment beam delivery for an average of 12 fractions per patient (total 158 datasets). The motion of each surface point is parameterized in terms of its period, amplitude and relative phase. Inter-comparison of the motion parameters across treatment schedules and between patients is made through the creation of corresponding regions on the breast surfaces. The motion period is spatially uniform and is similar in both patient groups (mean 4 s), with the small volume cohort exhibiting greater inter-fraction period variability. The mean motion amplitude is also similar in both groups with a range between 2 mm and 4 mm and an inter-fraction variability generally less than 1 mm. There is a phase lag of up to 0.4 s across the breast, led by the sternum. Breast patient motion is reasonably stable between and during treatment fractions, with the large volume cohort exhibiting greater repeatability than the small volume one.
    • Early clinical evaluation of a novel three-dimensional structure delineation software tool (SCULPTER) for radiotherapy treatment planning.

      McBain, Catherine A; Moore, Christopher J; Green, Matthew M L; Price, Gareth J; Sykes, Jonathan R; Amer, Aminah; Khoo, Vincent S; Price, Patricia M; Academic Department of Radiation Oncology, The University of Manchester, Manchester, UK. (2008-08)
      Modern radiotherapy treatment planning (RTP) necessitates increased delineation of target volumes and organs at risk. Conventional manual delineation is a laborious, time-consuming and subjective process. It is prone to inconsistency and variability, but has the potential to be improved using automated segmentation algorithms. We carried out a pilot clinical evaluation of SCULPTER (Structure Creation Using Limited Point Topology Evidence in Radiotherapy) - a novel prototype software tool designed to improve structure delineation for RTP. Anonymized MR and CT image datasets from patients who underwent radiotherapy for bladder or prostate cancer were studied. An experienced radiation oncologist used manual and SCULPTER-assisted methods to create clinically acceptable organ delineations. SCULPTER was also tested by four other RTP professionals. Resulting contours were compared by qualitative inspection and quantitatively by using the volumes of the structures delineated and the time taken for completion. The SCULPTER tool was easy to apply to both MR and CT images and diverse anatomical sites. SCULPTER delineations closely reproduced manual contours with no significant volume differences detected, but SCULPTER delineations were significantly quicker (p<0.05) in most cases. In conclusion, clinical application of SCULPTER resulted in rapid and simple organ delineations with equivalent accuracy to manual methods, demonstrating proof-of-principle of the SCULPTER system and supporting its potential utility in RTP.
    • Evaluation of larynx-sparing techniques with IMRT when treating the head and neck.

      Webster, Gareth J; Rowbottom, Carl G; Ho, Kean F; Slevin, Nicholas J; Mackay, Ranald I; North Western Medical Physics, Christie Hospital National Health Service Foundation Trust, Manchester, UK. Gareth.Webster@physics.cr.man.ac.uk (2008-10-01)
      PURPOSE: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. METHODS AND MATERIALS: A total of 13 oropharyngeal cancer whole-field IMRT plans were planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. RESULTS: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. CONCLUSION: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.
    • The impact of clinical factors on the development of late radiation toxicity: results from the Medical Research Council RT01 trial (ISRCTN47772397).

      Barnett, G C; De Meerleer, G; Gulliford, S L; Sydes, M R; Elliott, Rebecca M; Dearnaley, D; University of Cambridge, Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK. (2011-11)
      A variety of dosimetric parameters have been shown to influence the incidence of late radiation toxicity. The effect of other treatment- and patient-related factors is less well established. The aim of this study was to elucidate the influence of such factors in the development of late symptoms after radical radiotherapy to the prostate.
    • IMRT dose fractionation for head and neck cancer: variation in current approaches will make standardisation difficult.

      Ho, Kean F; Fowler, Jack F; Sykes, Andrew J; Yap, Beng K; Lee, Lip W; Slevin, Nicholas J; Academic Department of Radiation Oncology, University of Manchester, Christie Hospital, Wilmslow Road, Manchester, UK. (2009)
      INTRODUCTION: Altered fractionation has demonstrated clinical benefits compared to the conventional 2 Gy/day standard of 70 Gy. When using synchronous chemotherapy, there is uncertainty about optimum fractionation. IMRT with its potential for Simultaneous Integrated Boost (SIB) adds further to this uncertainty. This survey will examine international practice of IMRT fractionation and suggest possible reasons for diversity in approach. MATERIAL AND METHODS: Fourteen international cancer centres were surveyed for IMRT dose/fractionation practised in each centre. RESULTS: Twelve different types of dose fractionation were reported. Conventional 70-72 Gy (daily 2 Gy/fraction) was used in 3/14 centres with concurrent chemotherapy while 11/14 centres used altered fractionation. Two centres used >1 schedule. Reported schedules and number of centres included 6 fractions/week DAHANCA regime (3), modest hypofractionation (< or =2.2 Gy/fraction) (3), dose-escalated hypofractionation (> or =2.3 Gy/fraction) (4), hyperfractionation (1), continuous acceleration (1) and concomitant boost (1). Reasons for dose fractionation variability include (i) dose escalation; (ii) total irradiated volume; (iii) number of target volumes; (iv) synchronous systemic treatment; (v) shorter overall treatment time; (vi) resources availability; (vii) longer time on treatment couch; (viii) variable GTV margins; (ix) confidence in treatment setup; (x) late tissue toxicity and (xi) use of lower neck anterior fields. CONCLUSIONS: This variability in IMRT fractionation makes any meaningful comparison of treatment results difficult. Some standardization is needed particularly for design of multi-centre randomized clinical trials.
    • Inter-fraction motion and dosimetric consequences during breast intensity-modulated radiotherapy (IMRT).

      Jain, Pooja; Marchant, Thomas E; Green, Melanie M; Watkins, Gillian R; Davies, Julie; McCarthy, Claire; Loncaster, Juliette A; Stewart, Alan L; Magee, Brian; Moore, Christopher J; et al. (2009-01)
      BACKGROUND AND PURPOSE: Intensity-modulated radiotherapy (IMRT) can improve dose homogeneity within the breast planned target volume (PTV), but may be more susceptible to patient/organ motion than standard tangential radiotherapy (RT). We used daily cone-beam CT (CBCT) imaging to assess inter-fraction motion during breast IMRT and its subsequent impact on IMRT and standard RT dose homogeneity. MATERIALS AND METHODS: Ten breast cancer patients selected for IMRT were studied. CBCT images were acquired immediately after daily treatment. Automatic image co-registration was used to determine patient positioning variations. Daily PTV contours were used to calculate PTV variations and daily delivered IMRT and theoretically planned tangential RT dose. RESULTS: Group systematic (and random) setup errors detected by CBCT were 5.7 (3.9)mm laterally, 2.8 (3.5)mm vertically and 2.3 (3.2)mm longitudinally. Rotations >2 degrees in any axis occurred on 53/106 (50%) occasions. Daily PTV volume varied up to 23%. IMRT dose homogeneity was superior at planning and throughout the treatment compared with standard RT (1.8% vs. 15.8% PTV received >105% planned mean dose), despite increased motion sensitivity. CONCLUSIONS: CBCT revealed inadequacies of current patient positioning and verification procedures during breast RT and confirmed improved dose homogeneity using IMRT for the patients studied.
    • Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy.

      Ho, Kean F; Marchant, Thomas E; Moore, Christopher J; Webster, Gareth J; Rowbottom, Carl G; Pennington, Hazel; Lee, Lip W; Yap, Beng K; Sykes, Andrew J; Slevin, Nicholas J; et al. (2012-03-01)
      Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment.
    • Point: why choose pulsed-dose-rate brachytherapy for treating gynecologic cancers?

      Davidson, Susan E; Hendry, Jolyon H; West, Catharine M L; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom. Susan.Davidson@christie.nhs.uk (2010-08-09)