• Blood flow and Vd (water): both biomarkers required for interpreting the effects of vascular targeting agents on tumor and normal tissue.

      Kötz, Barbara; West, Catharine M L; Saleem, Azeem; Jones, Terry; Price, Patricia M; Academic Department of Radiation Oncology, The University of Manchester, Manchester, UK. (2009-02)
      Positron emission tomography studies with oxygen-15-labeled water provide in vivo quantitative tissue perfusion variables-blood flow and fractional volume of distribution of water [V(d) (water)]. To investigate the relationship between perfusion variables and the effect of vascular-targeting agents on vasculature, we measured tissue perfusion in tumors, spleen, kidney, and liver before and after treatment with combretastatin-A4-phosphate, a combination of nicotinamide and carbogen (N/C), and interferon (IFN). We observed that mean tumor blood flow and V(d) (water) was lower than in kidney, liver, and spleen at baseline. Blood flow and V(d) (water) were related in tumor (r = 0.62; P = 0.004) at baseline, but not in other normal tissues evaluated, where minimal variations in V(d) (water) were observed over a wide range of blood flow. Despite the relationship between blood flow and V(d) (water) in tumors before intervention, vascular-targeting agent-induced changes in these perfusion variables were not correlated. In contrast, changes in blood flow and V(d) (water) correlated in kidney and spleen after N/C and in kidney after combretastatin-A4-phosphate. The close relation between blood flow and V(d) (water) in tumors but not normal tissue may reflect barriers to fluid exchange in tumors because of necrosis and/or increased interstitial fluid pressure and underlies the importance and interdependence of these positron emission tomography perfusion variables under these conditions. As blood flow and V(d) (water) signify different aspects of tissue perfusion, the differential effects of interventions on both variables, flow and V(d) (water), should therefore be reported in future studies.
    • Early tumor drug pharmacokinetics is influenced by tumor perfusion but not plasma drug exposure.

      Saleem, Azeem; Price, Patricia M; Academic Department of Radiation Oncology, The Christie Hospital NHS Foundation Trust, Manchester. azeem.saleem@manchester.ac.uk (2008-12-15)
      PURPOSE: Pharmacokinetic parameters derived from plasma sampling are used as a surrogate of tumor pharmacokinetics. However, pharmacokinetics-modulating strategies do not always result in increased therapeutic efficacy. Nonsurrogacy of plasma kinetics may be due to tissue-specific factors such as tumor perfusion. EXPERIMENTAL DESIGN: To assess the impact of tumor perfusion and plasma drug exposure on tumor pharmacokinetics, positron emission tomography studies were done with oxygen-15 radiolabeled water in 12 patients, with 6 patients undergoing positron emission tomography studies with carbon-11 radiolabeled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide and the other 6 with fluorine-18 radiolabeled 5-fluorouracil. RESULTS: We found that tumor blood flow (mL blood/mL tissue/minute) was significantly correlated to early tumor radiotracer uptake between 4 and 6 minutes [standard uptake value (SUV)4-6; rho = 0.79; P = 0.002], tumor radiotracer exposure over 10 minutes [area under the time-activity curve (AUC)0-10; predominantly parent drug; rho = 0.86; P < 0.001], and tumor radiotracer exposure over 60 minutes (AUC0-60; predominantly radiolabeled metabolites; rho = 0.80; P = 0.002). Similarly, fractional volume of distribution of radiolabeled water in tumor (Vd) was significantly correlated with SUV4-6 (rho = 0.80; P = 0.002), AUC0-10 (rho = 0.85; P < 0.001), and AUC0-60 (rho = 0.66; P = 0.02). In contrast, no correlation was observed between plasma drug or total radiotracer exposure over 60 minutes and tumor drug uptake or exposure. Tumor blood flow was significantly correlated to Vd (rho = 0.69; P = 0.014), underlying the interdependence of tumor perfusion and Vd. CONCLUSIONS: Tumor perfusion is a key factor that influences tumor drug uptake/exposure. Tumor vasculature-targeting strategies may thus result in improved tumor drug exposure and therefore drug efficacy.
    • A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients.

      Rosso, Lula; Brock, Cathryn S; Gallo, James M; Saleem, Azeem; Price, Patricia M; Turkheimer, Federico E; Aboagye, E O; Clinical Sciences Centre, Imperial College, Faculty of Medicine, Hammersmith Hospital Campus, London, UK. (2009-01-01)
      Difficulties in direct measurement of drug concentrations in human tissues have hampered the understanding of drug accumulation in tumors and normal tissues. We propose a new system analysis modeling approach to characterize drug distribution in tissues based on human positron emission tomography (PET) data. The PET system analysis method was applied to temozolomide, an important alkylating agent used in the treatment of brain tumors, as part of standard temozolomide treatment regimens in patients. The system analysis technique, embodied in the convolution integral, generated an impulse response function that, when convolved with temozolomide plasma concentration input functions, yielded predicted normal brain and brain tumor temozolomide concentration profiles for different temozolomide dosing regimens (75-200 mg/m(2)/d). Predicted peak concentrations of temozolomide ranged from 2.9 to 6.7 microg/mL in human glioma tumors and from 1.8 to 3.7 microg/mL in normal brain, with the total drug exposure, as indicated by the tissue/plasma area under the curve ratio, being about 1.3 in tumor compared with 0.9 in normal brain. The higher temozolomide exposures in brain tumor relative to normal brain were attributed to breakdown of the blood-brain barrier and possibly secondary to increased intratumoral angiogenesis. Overall, the method is considered a robust tool to analyze and predict tissue drug concentrations to help select the most rational dosing schedules.
    • Optimization of the injected activity in dynamic 3D PET: a generalized approach using patient-specific NECs as demonstrated by a series of 15O-H2O scans.

      Walker, Mathew D; Matthews, Julian C; Asselin, Marie-Claude; Saleem, Azeem; Dickinson, Clare; Charnley, Natalie; Julyan, Peter J; Price, Patricia M; Jones, Terry; School of Cancer and Imaging Sciences, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom. (2009-01-30)
    • Plasma pharmacokinetic evaluation of cytotoxic agents radiolabelled with positron emitting radioisotopes.

      Saleem, Azeem; Aboagye, E O; Matthews, Julian C; Price, Patricia M; Academic Department of Radiation Oncology, Christie Hospital NHS Foundation Trust, Wilmslow Road, and The University of Manchester Wolfson Molecular Imaging Centre, Manchester M20 4BX, UK. azeem.saleem@manchester.ac.uk (2008-04)
      PURPOSE: This study aimed to evaluate the utility of plasma pharmacokinetic analyses of anti-cancer agents from data obtained during positron emission tomography (PET) oncology studies of radiolabelled anti-cancer agents. PATIENTS AND METHODS: Thirteen patients were administered fluorine-18 radiolabelled 5-FU ([(18)F]5-FU) admixed with 5-FU, corresponding to a total 5-FU dose of 380-407 mg/m2 (eight patients) and 1 mg/m2 (five patients). Nine patients received 2.2-19.2 microg/m2 of carbon-11 radiolabelled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide ([11C]DACA) at 1/1,000th of phase I dose, as part of phase 0 microdosing study. Radioactivity of parent drug obtained from arterial blood samples, the injected activity of the radiolabelled drug, and the total dose of injected drug were used to obtain plasma drug concentrations. Plasma pharmacokinetic parameters were estimated using model-dependent and model-independent methods. RESULTS: 5-FU plasma concentrations at therapeutic doses were above the Km and a single compartment kinetic model was best used to fit the kinetics, with a mean half-life of 8.6 min. Clearance and volumes of distribution (Vd) obtained using both model-dependent and model-independent methods were similar. Mean (SE) clearance was 1,421(144), ml min(-1) and 1,319 (119) ml min(-1) and the mean (SE) Vd was 17.3 (1.8) l and 16.3 (1.9) l by the model-independent method and model-dependent methods, respectively. In contrast, with 1 mg/m2, plasma concentrations of 5-FU were less than the Km and a two-compartment model was used to best fit the kinetics, with the mean 5-FU half-life of 6.5 min. The mean (SE) clearances obtained by the model-independent method and model-dependent methods were 3,089 (314) ml min(-1) and 2,225 (200) ml min(-1), respectively and the mean (SE) Vd were 27.9 (7.0) l and 2.3 (0.4) l, by the model independent and dependent methods, respectively. Extrapolation of AUC0-Clast to AUC0-infinity was less than 3% in both these cohort of patients. A two-compartment model with a mean half-life of 42.1 min was used to best fit the kinetics of DACA; considerable extrapolation (mean 26%) was required to obtain AUC0-infinity from AUC0-Clast. Mean (SE) clearance of DACA was 1,920 (269) ml min(-1), with the model-independent method and 1,627 (287) ml min(-1) with the model-dependent method. Similarly, Vd [mean (SE)] of DACA with the model-independent and model-dependent methods were 118 (22) l and 50 (15) l, respectively. CONCLUSIONS: Pharmacokinetic parameters can be estimated with confidence from PET studies for agents given at therapeutic doses, whose half-lives are significantly less than the total sampling time during the scan. Tracer studies performed alone, wherein plasma levels below the Km are expected, may also provide valuable information on drug clearance for the entire range of linear kinetics. However, drugs with half-lives longer than the sampling duration are inappropriate for PET plasma pharmacokinetic evaluation.
    • Radiotherapy in the management of unresectable locally advanced pancreatic cancer: a survey of the current UK practice of clinical oncologists.

      Saleem, Azeem; Jackson, A; Mukherjee, S; Stones, N; Crosby, T; Tait, D; Price, Patricia M; University of Manchester Academic Radiation Oncology, The Christie NHS Foundation Trust, Manchester, UK. azeem.saleem@manchester.ac.uk (2010-05)
      A survey was conducted by the Academic Clinical Oncology and Radiobiology Research Network (ACORRN) to evaluate current radiotherapy practice and to inform future research needs in patients with locally advanced pancreatic cancer. A clear need for a co-ordinated multicentre approach, given the limited number of patients who may qualify for such UK trials, was identified. Such trials should incorporate evidence-based treatment protocols and appropriate quality assurance procedures to ensure delivery of the highest standards of radiation-based therapy within, and without, clinical trials.
    • Suboptimal use of intravenous contrast during radiotherapy planning in the UK.

      Kim, Su Woon; Russell, Wanda; Price, Patricia M; Saleem, Azeem; Department of Clinical Oncology, Christie Hospital, Manchester, UK. (2008-12)
      We aimed to evaluate the use of intravenous (IV) contrast during acquisition of radiotherapy planning (RTP) scans and to compare current usage with the Royal College of Radiologists' (RCR) recommendations. Questionnaires were circulated via the Academic Clinical Oncology and Radiobiology Research Network (ACORRN) website, email and post to 60 UK radiotherapy centre managers. Questions were asked regarding the (i) tumour sites where IV contrast was used, (ii) person administering the contrast, (iii) availability of dynamic pump, (iv) tumour sites that centres wished to use contrast, (v) reasons for not using contrast and (vi) awareness of RCR recommendations. 50 (83%) centres responded to the questionnaire, of which 27 responded via the ACCORN website and 18 by e-mail. Despite 38 out of 50 responding centres using IV contrast, and accessibility to dynamic pumps existing in 39 centres, IV contrast usage was suboptimal, with more than half of the centres (27/50; 54%) wishing to use it at more tumour sites. IV contrast was most often used during RTP of the brain, with suboptimal usage in lung tumours. None of the 50 centres administered IV contrast during RTP scan acquisition in all of the 8 RCR recommended tumour sites. Radiographers were mainly responsible for contrast administration, and a lack of staff was cited as the main reason for suboptimal contrast usage. Disappointingly, only 35 of the 50 radiotherapy managers (70%) were aware of the RCR recommendations. Redress of the underlying reasons for suboptimal IV contrast administration during RTP, including acquisition of the necessary skill mix by staff and implementation of RCR recommendations, would help standardize UK practice.