• A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients.

      Rosso, Lula; Brock, Cathryn S; Gallo, James M; Saleem, Azeem; Price, Patricia M; Turkheimer, Federico E; Aboagye, E O; Clinical Sciences Centre, Imperial College, Faculty of Medicine, Hammersmith Hospital Campus, London, UK. (2009-01-01)
      Difficulties in direct measurement of drug concentrations in human tissues have hampered the understanding of drug accumulation in tumors and normal tissues. We propose a new system analysis modeling approach to characterize drug distribution in tissues based on human positron emission tomography (PET) data. The PET system analysis method was applied to temozolomide, an important alkylating agent used in the treatment of brain tumors, as part of standard temozolomide treatment regimens in patients. The system analysis technique, embodied in the convolution integral, generated an impulse response function that, when convolved with temozolomide plasma concentration input functions, yielded predicted normal brain and brain tumor temozolomide concentration profiles for different temozolomide dosing regimens (75-200 mg/m(2)/d). Predicted peak concentrations of temozolomide ranged from 2.9 to 6.7 microg/mL in human glioma tumors and from 1.8 to 3.7 microg/mL in normal brain, with the total drug exposure, as indicated by the tissue/plasma area under the curve ratio, being about 1.3 in tumor compared with 0.9 in normal brain. The higher temozolomide exposures in brain tumor relative to normal brain were attributed to breakdown of the blood-brain barrier and possibly secondary to increased intratumoral angiogenesis. Overall, the method is considered a robust tool to analyze and predict tissue drug concentrations to help select the most rational dosing schedules.
    • No relationship between 18F-fluorodeoxyglucose positron emission tomography and expression of Glut-1 and -3 and hexokinase I and II in high-grade glioma.

      Charnley, Natalie; Airley, R; Du Plessis, D; West, Catharine M L; Brock, Cathryn S; Barnett, C; Matthews, Julian C; Symonds, Kirsten; Bottomly, M; Swindell, Ric; et al. (2008-09)
      The purpose of this study was to compare glucose metabolism, measured using 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG-PET), with the expression of Glut-1 and -3 and hexokinase I (Hex I) and II in high-grade glioma. The retrospective study involved 27 patients with WHO classification grade III and IV glioma, with either newly diagnosed or recurrent tumours. Patients underwent dynamic and static [18F]FDG-PET to glucose metabolic rate (MRGlu) and standardised uptake value (SUV), respectively. Tumour biopsies were obtained and stained using immunohistochemistry for the expression of Glut-1, -3, Hex I and II. Relationships between variables were studied using Spearman's rank correlation test. Results showed that the expression of Glut-1, Glut-3, Hex I and Hex II varied between and within the tumour samples. The mean of MRGlu was 0.2 (range 0.09-0.25) micromol/min/ml and that of SUV was 4.2 (range 3.2-5.2). There were no significant relationships among the tumour expression of any of the proteins studied with either MRGlu or SUV (p>0.21 for all). In conclusion, the lack of relationship between the immunohistochemical expression of Glut-1, -3, Hex I or II and glucose metabolism measured using [18F]FDG-PET in patients with high-grade glioma may be due to the tissue heterogeneity and presence of necrosis in high-grade tumours.