• Evaluation of larynx-sparing techniques with IMRT when treating the head and neck.

      Webster, Gareth J; Rowbottom, Carl G; Ho, Kean F; Slevin, Nicholas J; Mackay, Ranald I; North Western Medical Physics, Christie Hospital National Health Service Foundation Trust, Manchester, UK. Gareth.Webster@physics.cr.man.ac.uk (2008-10-01)
      PURPOSE: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. METHODS AND MATERIALS: A total of 13 oropharyngeal cancer whole-field IMRT plans were planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. RESULTS: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. CONCLUSION: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.
    • IMRT dose fractionation for head and neck cancer: variation in current approaches will make standardisation difficult.

      Ho, Kean F; Fowler, Jack F; Sykes, Andrew J; Yap, Beng K; Lee, Lip W; Slevin, Nicholas J; Academic Department of Radiation Oncology, University of Manchester, Christie Hospital, Wilmslow Road, Manchester, UK. (2009)
      INTRODUCTION: Altered fractionation has demonstrated clinical benefits compared to the conventional 2 Gy/day standard of 70 Gy. When using synchronous chemotherapy, there is uncertainty about optimum fractionation. IMRT with its potential for Simultaneous Integrated Boost (SIB) adds further to this uncertainty. This survey will examine international practice of IMRT fractionation and suggest possible reasons for diversity in approach. MATERIAL AND METHODS: Fourteen international cancer centres were surveyed for IMRT dose/fractionation practised in each centre. RESULTS: Twelve different types of dose fractionation were reported. Conventional 70-72 Gy (daily 2 Gy/fraction) was used in 3/14 centres with concurrent chemotherapy while 11/14 centres used altered fractionation. Two centres used >1 schedule. Reported schedules and number of centres included 6 fractions/week DAHANCA regime (3), modest hypofractionation (< or =2.2 Gy/fraction) (3), dose-escalated hypofractionation (> or =2.3 Gy/fraction) (4), hyperfractionation (1), continuous acceleration (1) and concomitant boost (1). Reasons for dose fractionation variability include (i) dose escalation; (ii) total irradiated volume; (iii) number of target volumes; (iv) synchronous systemic treatment; (v) shorter overall treatment time; (vi) resources availability; (vii) longer time on treatment couch; (viii) variable GTV margins; (ix) confidence in treatment setup; (x) late tissue toxicity and (xi) use of lower neck anterior fields. CONCLUSIONS: This variability in IMRT fractionation makes any meaningful comparison of treatment results difficult. Some standardization is needed particularly for design of multi-centre randomized clinical trials.
    • Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy.

      Ho, Kean F; Marchant, Thomas E; Moore, Christopher J; Webster, Gareth J; Rowbottom, Carl G; Pennington, Hazel; Lee, Lip W; Yap, Beng K; Sykes, Andrew J; Slevin, Nicholas J; et al. (2012-03-01)
      Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment.
    • A novel imaging technique for fusion of high-quality immobilised MR images of the head and neck with CT scans for radiotherapy target delineation.

      Webster, Gareth J; Kilgallon, J E; Ho, Kean F; Rowbottom, Carl G; Slevin, Nicholas J; Mackay, Ranald I; North Western Medical Physics, Christie Hospital NHS Foundation Trust, Manchester, UK. gareth.webster@physics.cr.man.ac.uk (2009-06)
      Uncertainty and inconsistency are observed in target volume delineation in the head and neck for radiotherapy treatment planning based only on CT imaging. Alternative modalities such as MRI have previously been incorporated into the delineation process to provide additional anatomical information. This work aims to improve on previous studies by combining good image quality with precise patient immobilisation in order to maintain patient position between scans. MR images were acquired using quadrature coils placed over the head and neck while the patient was immobilised in the treatment position using a five-point thermoplastic shell. The MR image and CT images were automatically fused in the Pinnacle treatment planning system using Syntegra software. Image quality, distortion and accuracy of the image registration using patient anatomy were evaluated. Image quality was found to be superior to that acquired using the body coil, while distortion was < 1.0 mm to a radius of 8.7 cm from the scan centre. Image registration accuracy was found to be 2.2 mm (+/- 0.9 mm) and < 3.0 degrees (n = 6). A novel MRI technique that combines good image quality with patient immobilization has been developed and is now in clinical use. The scan duration of approximately 15 min has been well tolerated by all patients.
    • Use of multiple biological markers in radiotherapy-treated head and neck cancer.

      Silva, Priyamal; Slevin, Nicholas J; Sloan, Philip; Valentine, Helen R; Ryder, W David J; Price, Patricia M; West, Catharine M L; Homer, Jarrod J; School of Cancer & Enabling Sciences, The University of Manchester, Manchester, UK. (2010-06)
      OBJECTIVE: Management of patients with head and neck squamous cell carcinoma is often based on clinical parameters, with little appreciation of the underlying tumour biology. Single biological marker studies fail to acknowledge the complexity of these tumours. Our aim was to define a profile of biological markers associated with outcome. DESIGN: This retrospective study involved consecutive patients with oropharyngeal squamous cell carcinoma treated with primary radiotherapy between 1996 and 2001. Pre-treatment biopsies were used to study the immunohistochemical expression of nine biological markers. Markers were chosen to reflect biologically relevant pathways. RESULTS: Following analysis of nine markers, a profile of two markers was derived (carbonic anhydrase 9 and major vault protein), the co-expression of which conferred a significantly poor probability of locoregional control. The prognostic effect of these biomarkers in combination was greater than their effect individually. CONCLUSION: Biomarker profiles can be established which highlight large differences in locoregional control. Identifying tumours that express both carbonic anhydrase 9 and major vault protein may facilitate patient selection for more aggressive treatment.