• Circulating tumor cells as a window on metastasis biology in lung cancer.

      Hou, Jian-Mei; Krebs, Matthew G; Ward, Timothy H; Sloane, Robert; Priest, Lynsey; Hughes, Andrew; Clack, Glen; Ranson, Malcolm R; Blackhall, Fiona H; Dive, Caroline; et al. (2011-03)
      Circulating tumor cell (CTC) number in metastatic cancer patients yields prognostic information consistent with enhanced cell migration and invasion via loss of adhesion, a feature of epithelial-to-mesenchymal transition (EMT). Tumor cells also invade via collective migration with maintained cell-cell contacts and consistent with this is the circulating tumor microemboli (CTM; contiguous groups of tumor cells) that are observed in metastatic cancer patients. Using a blood filtration approach, we examined markers of EMT (cytokeratins, E-cadherin, vimentin, neural cadherin) and prevalence of apoptosis in CTCs and CTM to explore likely mechanism(s) of invasion in lung cancer patients and address the hypothesis that cells within CTM have a survival advantage. Intra-patient and inter-patient heterogeneity was observed for EMT markers in CTCs and CTM. Vimentin was only expressed in some CTCs, but in the majority of cells within CTM; E-cadherin expression was lost, cytoplasmic or nuclear, and rarely expressed at the surface of the cells within CTM. A subpopulation of CTCs was apoptotic, but apoptosis was absent within CTM. This pilot study suggests that EMT is not prosecuted homogeneously in tumor cells within the circulation of lung cancer patients and that collective migration and enhanced survival of cells within CTM might contribute to lung cancer metastasis. Multiplex analysis and further detailed exploration of metastatic potential and EMT in CTCs/CTM is now warranted in a larger patient cohort.
    • Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer.

      Krebs, Matthew G; Sloane, Robert; Priest, Lynsey; Lancashire, Lee J; Hou, Jian-Mei; Greystoke, Alastair; Ward, Timothy H; Ferraldeschi, Roberta; Hughes, Andrew; Clack, Glen; et al. (2011-04-20)
      Lung cancer is the leading cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC) lacks validated biomarkers to predict treatment response. This study investigated whether circulating tumor cells (CTCs) are detectable in patients with NSCLC and what their ability might be to provide prognostic information and/or early indication of patient response to conventional therapy.
    • Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy.

      Hou, Jian-Mei; Greystoke, Alastair; Lancashire, Lee J; Cummings, Jeffrey; Ward, Timothy H; Board, Ruth E; Amir, Eitan; Hughes, Sarah; Krebs, Matthew G; Hughes, Andrew; et al. (2009-08)
      Serological cell death biomarkers and circulating tumor cells (CTCs) have potential uses as tools for pharmacodynamic blood-based assays and their subsequent application to early clinical trials. In this study, we evaluated both the expression and clinical significance of CTCs and serological cell death biomarkers in patients with small cell lung cancer. Blood samples from 88 patients were assayed using enzyme-linked immunosorbent assays for various cytokeratin 18 products (eg, M65, cell death, M30, and apoptosis) as well as nucleosomal DNA. CTCs (per 7.5 ml of blood) were quantified using Veridex CellSearch technology. Before therapeutic treatment, cell death biomarkers were elevated in patients compared with controls. CTCs were detected in 86% of patients; additionally, CD56 was detectable in CTCs, confirming their neoplastic origin. M30 levels correlated with the percentage of apoptotic CTCs. M30, M65, lactate dehydrogenase, and CTC number were prognostic for patient survival as determined by univariate analysis. Using multivariate analysis, both lactate dehydrogenase and M65 levels remained significant. CTC number fell following chemotherapy, whereas levels of serological cell death biomarkers peaked at 48 hours and fell by day 22, mirroring the tumor response. A 48-hour rise in nucleosomal DNA and M30 levels was associated with early response and severe toxicity, respectively. Our results provide a rationale to include the use of serological biomarkers and CTCs in early clinical trials of new agents for small cell lung cancer.