Show simple item record

dc.contributor.authorKarystianis, George
dc.contributor.authorDehghan, A
dc.contributor.authorKovacevic, A
dc.contributor.authorKeane, J
dc.contributor.authorNenadic, G
dc.date.accessioned2015-07-21T10:31:13Zen
dc.date.available2015-07-21T10:31:13Zen
dc.date.issued2015-06-29en
dc.identifier.citationUsing Local Lexicalized Rules to Identify Heart Disease Risk Factors in Clinical Notes. 2015: J Biomed Informen
dc.identifier.issn1532-0480en
dc.identifier.pmid26133479en
dc.identifier.doi10.1016/j.jbi.2015.06.013en
dc.identifier.urihttp://hdl.handle.net/10541/560783en
dc.description.abstractHeart disease is the leading cause of death globally and a significant part of the human population lives with it. A number of risk factors have been recognised as contributing to the disease, including obesity, coronary artery disease (CAD), hypertension, hyperlipidemia, diabetes, smoking, and family history of premature CAD. This paper describes and evaluates a methodology to extract mentions of such risk factors from diabetic clinical notes, which was a task of the i2b2/UTHealth 2014 Challenge in Natural Language Processing for Clinical Data. The methodology is knowledge-driven and the system implements local lexicalised rules (based on syntactical patterns observed in notes) combined with manually constructed dictionaries that characterize the domain. A part of the task was also to detect the time interval in which the risk factors were present in a patient. The system was applied to an evaluation set of 514 unseen notes and achieved a micro-average F-score of 88% (with 86% precision and 90% recall). While the identification of CAD family history, medication and some of the related disease factors (e.g. hypertension, diabetes, hyperlipidemia) showed quite good results, the identification of CAD-specific indicators proved to be more challenging (F-score of 74%). Overall, the results are encouraging and suggested that automated text mining methods can be used to process clinical notes to identify risk factors and monitor progression of heart disease on a large-scale, providing necessary data for clinical and epidemiological studies.
dc.languageENGen
dc.language.isoenen
dc.rightsArchived with thanks to Journal of biomedical informaticsen
dc.titleUsing Local Lexicalized Rules to Identify Heart Disease Risk Factors in Clinical Notes.en
dc.typeArticleen
dc.contributor.departmentSchool of Computer Science, University of Manchester, Manchester, UKen
dc.identifier.journalJournal of Biomedical Informaticsen
html.description.abstractHeart disease is the leading cause of death globally and a significant part of the human population lives with it. A number of risk factors have been recognised as contributing to the disease, including obesity, coronary artery disease (CAD), hypertension, hyperlipidemia, diabetes, smoking, and family history of premature CAD. This paper describes and evaluates a methodology to extract mentions of such risk factors from diabetic clinical notes, which was a task of the i2b2/UTHealth 2014 Challenge in Natural Language Processing for Clinical Data. The methodology is knowledge-driven and the system implements local lexicalised rules (based on syntactical patterns observed in notes) combined with manually constructed dictionaries that characterize the domain. A part of the task was also to detect the time interval in which the risk factors were present in a patient. The system was applied to an evaluation set of 514 unseen notes and achieved a micro-average F-score of 88% (with 86% precision and 90% recall). While the identification of CAD family history, medication and some of the related disease factors (e.g. hypertension, diabetes, hyperlipidemia) showed quite good results, the identification of CAD-specific indicators proved to be more challenging (F-score of 74%). Overall, the results are encouraging and suggested that automated text mining methods can be used to process clinical notes to identify risk factors and monitor progression of heart disease on a large-scale, providing necessary data for clinical and epidemiological studies.


Files in this item

This item appears in the following Collection(s)

Show simple item record