• Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification.

      Simpson, Kathryn L; Whetton, Anthony D; Dive, Caroline; Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom. KSimpson@PICR.man.ac.uk (2009-05-01)
      The potential for development of personalised medicine through the characterisation of novel biomarkers is an exciting prospect for improved patient care. Recent advances in mass spectrometric (MS) techniques, liquid phase analyte separation and bioinformatic tools for high throughput now mean that this goal may soon become a reality. However, there are challenges to be overcome for the identification and validation of robust biomarkers. Bio-fluids such as plasma and serum are a rich source of protein, many of which may reflect disease status, and due to the ease of sampling and handling, novel blood borne biomarkers are very much sought after. MS-based methods for high throughput protein identification and quantification are now available such that the issues arising from the huge dynamic range of proteins present in plasma may be overcome, allowing deep mining of the blood proteome to reveal novel biomarker signatures for clinical use. In addition, the development of sensitive MS-based methods for biomarker validation may bypass the bottleneck created by the need for generation and usage of reliable antibodies prior to large scale screening. In this review, we discuss the MS-based methods that are available for clinical proteomic analysis and highlight the progress made and future challenges faced in this cutting edge area of research.
    • Quantitative multiplexed quantum dot immunohistochemistry.

      Sweeney, Elizabeth; Ward, Timothy H; Gray, N; Womack, C; Jayson, Gordon C; Hughes, Andrew; Dive, Caroline; Byers, Richard J; Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, 420 4BX, UK. (2008-09-19)
      Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.
    • Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis.

      Williamson, Andrew J K; Smith, Duncan L; Blinco, David; Unwin, Richard D; Pearson, Stella; Wilson, Claire L; Miller, Crispin J; Lancashire, Lee J; Lacaud, Georges; Kouskoff, Valerie; et al. (2008-03)
      Embryonic stem (ES) cells can differentiate in vitro to produce the endothelial and hematopoietic precursor, the hemangioblasts, which are derived from the mesoderm germ layer. Differentiation of Bry(GFP/+) ES cell to hemangioblasts can be followed by the expression of the Bry(GFP/+) and Flk1 genes. Proteomic and transcriptomic changes during this differentiation process were analyzed to identify mechanisms for phenotypic change during early differentiation. Three populations of differentiating Bry(GFP) ES cells were obtained by flow cytometric sorting, GFP-Flk1- (epiblast), GFP+Flk1- (mesoderm), and GFP+Flk1+ (hemangioblast). Microarray analyses and relative quantification two-dimensional LCLC-MS/MS on nuclear extracts were performed. We identified and quantified 2389 proteins, 1057 of which were associated to their microarray probe set. These included a variety of low abundance transcription factors, e.g. UTF1, Sox2, Oct4, and E2F4, demonstrating a high level of proteomic penetrance. When paired comparisons of changes in the mRNA and protein expression levels were performed low levels of correlation were found. A strong correlation between isobaric tag-derived relative quantification and Western blot analysis was found for a number of nuclear proteins. Pathway and ontology analysis identified proteins known to be involved in the regulation of stem cell differentiation, and proteins with no described function in early ES cell development were also shown to change markedly at the proteome level only. ES cell development is regulated at the mRNA and protein level.
    • Quantum dots light up pathology.

      Tholouli, E; Sweeney, Elizabeth; Barrow, E; Clay, V; Hoyland, Judith A; Byers, Richard J; Department of Clinical Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, UK. (2008-11)
      Quantum dots (QDs) are novel nanocrystal fluorophores with extremely high fluorescence efficiency and minimal photobleaching. They also possess a constant excitation wavelength together with sharp and symmetrical tunable emission spectra. These unique optical properties make them near-perfect fluorescent markers and there has recently been rapid development of their use for bioimaging. QDs can be conjugated to a wide range of biological targets, including proteins, antibodies, and nucleic acid probes, rendering them of particular interest to pathology researchers. They have been used in multiplex immunohistochemistry and in situ hybridization, which when combined with multispectral imaging, has enabled quantitative measurement of gene expression in situ. QDs have also been used for live in vivo animal imaging and are now being applied to an ever-increasing range of biological problems. These are detailed in this review, which also acts to outline the important advances that have been made in their range of applications. The relative novelty of QDs can present problems in their practical use and guidelines for their application are given.
    • Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death.

      Tennant, D A; Frezza, C; MacKenzie, E D; Nguyen, Q D; Zheng, L; Selak, M A; Roberts, Darren L; Dive, Caroline; Watson, D G; Aboagye, E O; et al. (2009-11-12)
      Cells exposed to low-oxygen conditions (hypoxia) alter their metabolism to survive. This response, although vital during development and high-altitude survival, is now known to be a major factor in the selection of cells with a transformed metabolic phenotype during tumorigenesis. It is thought that hypoxia-selected cells have increased invasive capacity and resistance to both chemo- and radiotherapies, and therefore represent an attractive target for antitumor therapy. Hypoxia inducible factors (HIFs) are responsible for the majority of gene expression changes under hypoxia, and are themselves controlled by the oxygen-sensing HIF prolyl hydroxylases (PHDs). It was previously shown that mutations in succinate dehydrogenase lead to the inactivation PHDs under normoxic conditions, which can be overcome by treatment with alpha-ketoglutarate derivatives. Given that solid tumors contain large regions of hypoxia, the reactivation of PHDs in these conditions could induce metabolic catastrophe and therefore prove an effective antitumor therapy. In this report we demonstrate that derivatized alpha-ketoglutarate can be used as a strategy for maintaining PHD activity under hypoxia. By increasing intracellular alpha-ketoglutarate and activating PHDs we trigger PHD-dependent reversal of HIF1 activation, and PHD-dependent hypoxic cell death. We also show that derivatized alpha-ketoglutarate can permeate multiple layers of cells, reducing HIF1alpha levels and its target genes in vivo.
    • Reciprocal relationship between expression of hypoxia inducible factor 1alpha (HIF-1alpha) and the pro-apoptotic protein bid in ex vivo colorectal cancer.

      Seenath, M M; Roberts, Darren L; Cawthorne, Christopher; Saunders, Mark P; Armstrong, G; O'Dwyer, Sarah T; Stratford, Ian J; Dive, Caroline; Renehan, Andrew G; Clinical and Experimental Pharmacology, Paterson Institute of Cancer Research, Manchester, UK. (2008-08-05)
      Hypoxia inducible factor 1 (HIF-1) represses the transcription of pro-apoptotic bid in colorectal cancer cells in vitro. To assess the clinical relevance of this observation, HIF-1alpha and Bid were assessed in serial sections of 39 human colorectal adenocarcinomas by immunohistochemistry. In high HIF-1alpha nuclear-positive cell subpopulations, there was a significant reduction in Bid expression (ANOVA, P=0.04). Given the role of Bid in drug-induced apoptosis, these data add impetus to strategies targeting HIF-1 for therapeutic gain.
    • Reciprocal relationship between O6-methylguanine-DNA methyltransferase P140K expression level and chemoprotection of hematopoietic stem cells.

      Milsom, Michael D; Jerabek-Willemsen, Moran; Harris, Chad E; Schambach, Axel; Broun, Emily; Bailey, J; Jansen, Michael; Schleimer, David; Nattamai, Kalpana; Wilhelm, Jamie; et al. (2008-08-01)
      Retroviral-mediated delivery of the P140K mutant O(6)-methylguanine-DNA methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) has been proposed as a means to protect against dose-limiting myelosuppressive toxicity ensuing from chemotherapy combining O(6)-alkylating agents (e.g., temozolomide) with pseudosubstrate inhibitors (such as O(6)-benzylguanine) of endogenous MGMT. Because detoxification of O(6)-alkylguanine adducts by MGMT is stoichiometric, it has been suggested that higher levels of MGMT will afford better protection to gene-modified HSC. However, accomplishing this goal would potentially be in conflict with current efforts in the gene therapy field, which aim to incorporate weaker enhancer elements to avoid insertional mutagenesis. Using a panel of self-inactivating gamma-retroviral vectors that express a range of MGMT(P140K) activity, we show that MGMT(P140K) expression by weaker cellular promoter/enhancers is sufficient for in vivo protection/selection following treatment with O(6)-benzylguanine/temozolomide. Conversely, the highest level of MGMT(P140K) activity did not promote efficient in vivo protection despite mediating detoxification of O(6)-alkylguanine adducts. Moreover, very high expression of MGMT(P140K) was associated with a competitive repopulation defect in HSC. Mechanistically, we show a defect in cellular proliferation associated with elevated expression of MGMT(P140K), but not wild-type MGMT. This proliferation defect correlated with increased localization of MGMT(P140K) to the nucleus/chromatin. These data show that very high expression of MGMT(P140K) has a deleterious effect on cellular proliferation, engraftment, and chemoprotection. These studies have direct translational relevance to ongoing clinical gene therapy studies using MGMT(P140K), whereas the novel mechanistic findings are relevant to the basic understanding of DNA repair by MGMT.
    • Recommendations for cervical cancer prevention in Asia Pacific.

      Garland, Suzanne M; Cuzick, Jack; Domingo, Efren J; Goldie, Sue J; Kim, Young-Tak; Konno, Ryo; Parkin, D Maxwell; Qiao, You-Lin; Sankaranarayanan, Rengaswamy; Stern, Peter L; et al. (2008-08-19)
      Asia Oceania includes countries from both the Asia Pacific region and Australasia, which cover very diverse geographical areas and populations as well as bearing 52% of the cervical cancer burden in the world. Human papillomavirus (HPV) genotype distribution in women with normal cytology varies between countries in this region, as well as with the distribution typically observed in worldwide estimates or in Western countries. HPV-16 remains the predominant oncogenic type for high-grade cervical dysplasia and cervical cancer across the region, and HPV-18 is generally among the five most common types. HPV-58 is commonly found in cervical cancer as well as in women with normal cytology, and HPV-31, 33 and 35 are relatively less frequent in these regions compared to the West. While screening programmes have been proposed and implemented in several populations, successful programmes are rather limited and the majority of countries still have no or minimal screening services. Prophylactic HPV vaccination will only be feasible when it becomes affordable, thus the current priority and the short-term goal for cervical cancer control is to identify feasible and effective screening measures, and to find the most effective way to combine vaccination with sustainable screening programmes. This Regional Report has carefully described the disease burden of HPV and cervical cancer and the current situations in cervical cancer prevention for many countries in the Asia Oceania region. These data identify the many challenges and opportunities to be considered for policy decisions for cervical cancer control. Furthermore, this report presents the results of advanced decision analytic models calibrated to countries in the region that provide early insight into what strategies are most promising and those likely to be cost-effective and affordable. It thus provides a synthesis of the available evidence-based scientific information, in the context of a significant and systematic international review, that is likely to be useful to governments and public health providers.
    • Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical.

      Spasojević, Ivan; Mojović, Milos; Blagojević, Dusko; Spasić, Snezana D; Jones, David R; Nikolić-Kokić, Aleksandra; Spasić, Mihajlo B; Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia. ivan@cms.bg.ac.yu (2009-01-05)
      The hydroxyl radical (*OH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on *OH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of *OH radical formation decreased in the order F16BP>F1P>F6P>fructose>mannitol=glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber-Weiss-like system was also employed to generate *OH, so that the effect of iron sequestration could be distinguished from direct *OH radical scavenging. In the latter system, the rank order of *OH scavenging activity was F16BP>F1P>F6P>fructose=mannitol=glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body's reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.
    • rHVDM: an R package to predict the activity and targets of a transcription factor.

      Barenco, M; Papouli, E; Shah, S; Brewer, D; Miller, Crispin J; Hubank, M; Institute of Child Health, University College London, 30 Guilford street, London WC1N 1EH, UK. m.barenco@ucl.ac.uk (2009-02-01)
      SUMMARY: Highly parallel genomic platforms like microarrays often present researchers with long lists of differentially expressed genes but contain little or no information on how these genes are regulated. rHVDM is a novel R package which uses gene expression time course data to predict the activity and targets of a transcription factor. In the first step, rHVDM uses a small number of known targets to derive the activity profile of a given transcription factor. Then, in a subsequent step, this activity profile is used to predict other putative targets of that transcription factor. A dynamic and mechanistic model of gene expression is at the heart of the technique. Measurement error is taken into account during the process, which allows an objective assessment of the robustness of fit and, therefore, the quality of the predictions. The package relies on efficient algorithms and vectorization to accomplish potentially time consuming tasks including optimization and differential equation integration. We demonstrate the efficiency and accuracy of rHVDM by examining the activity of the tumour-suppressing transcription factor, p53. AVAILABILITY: The version of the package presented here (1.8.1) is freely available from the Bioconductor Web site (http://bioconductor.org/packages/2.3/bioc/html/rHVDM.html).
    • The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope.

      Tallada, Victor A; Tanaka, Kenji; Yanagida, Mitsuhiro; Hagan, Iain M; Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M204BX, England, UK. (2009-06-01)
      The fission yeast spindle pole body (SPB) comprises a cytoplasmic structure that is separated from an ill-defined nuclear component by the nuclear envelope. Upon mitotic commitment, the nuclear envelope separating these domains disperses as the two SPBs integrate into a hole that forms in the nuclear envelope. The SPB component Cut12 is linked to cell cycle control, as dominant cut12.s11 mutations suppress the mitotic commitment defect of cdc25.22 cells and elevated Cdc25 levels suppress the monopolar spindle phenotype of cut12.1 loss of function mutations. We show that the cut12.1 monopolar phenotype arises from a failure to activate and integrate the new SPB into the nuclear envelope. The activation of the old SPB was frequently delayed, and its integration into the nuclear envelope was defective, resulting in leakage of the nucleoplasm into the cytoplasm through large gaps in the nuclear envelope. We propose that these activation/integration defects arise from a local deficiency in mitosis-promoting factor activation at the new SPB.
    • A small molecule inhibitor of XIAP induces apoptosis and synergises with vinorelbine and cisplatin in NSCLC.

      Dean, Emma J; Ward, Timothy H; Pinilla, C; Houghten, R; Welsh, K; Makin, Guy W J; Ranson, Malcolm R; Dive, Caroline; Department of Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, England, UK [2] Derek Crowther Unit, Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, England, UK. (2009-11-10)
      Background:Evasion of apoptosis contributes to the pathogenesis of solid tumours including non-small cell lung cancer (NSCLC). Malignant cells resist apoptosis through over-expression of inhibitor of apoptosis proteins (IAPs), such as X-linked IAP (XIAP).Methods:A phenylurea-based small molecule inhibitor of XIAP, XIAP antagonist compound (XAC) 1396-11, was investigated preclincally to determine its ability to sensitise to clinically relevant cytotoxics, potentially allowing dose reduction while maintaining therapeutic efficacy.Results:XIAP protein expression was detected in six NSCLC cell lines examined. The cytotoxicity of XAC 1396-11 against cultured NSCLC cell lines in vitro was concentration- and time-dependent in both short-term and clonogenic assays. XAC 1396-11-induced apoptosis was confirmed by PARP cleavage and characteristic nuclear morphology. XAC 1396-11 synergised with vinorelbine+/-cisplatin in H460 and A549 NSCLC cells. The mechanism of synergy was enhanced apoptosis, shown by increased cleavage of caspase-3 and PARP and by the reversal of synergy by a pan-caspase inhibitor. Synergy between XAC 1396-11 and vinorelbine was augmented by optimising drug scheduling with superior effects when XAC 1396-11 was administered before vinorelbine.Conclusion:These preclinical data suggest that XIAP inhibition in combination with vinorelbine holds potential as a therapeutic strategy in NSCLC.British Journal of Cancer advance online publication, 10 November 2009; doi:10.1038/sj.bjc.6605418 www.bjcancer.com.
    • Specific demonstration of drug-induced tumour cell apoptosis in human xenografts models using a plasma biomarker.

      Olofsson, M Hägg; Cummings, Jeffrey; Fayad, W; Brnjic, S; Herrmann, R; Berndtsson, M; Hodgkinson, Cassandra L; Dean, Emma J; Odedra, Rajesh; Wilkinson, Robert W; et al. (2009)
      Pharmacodynamic (PD) assays should be used before advancing new drugs to clinical trials. Most PD assays measure the response to drugs in tissue, a procedure which requires tissue biopsies. The M30-Apoptosense ELISA is a PD biomarker assay for the quantitative determination of caspase-cleaved cytokeratin 18 (CK18) released from apoptotic carcinoma cells into blood. We here demonstrate that whereas the M30-Apoptosense ELISA assay detects human caspase-cleaved CK18, the mouse and rat CK18 caspase cleavage products are detected with low affinity. The M30-Apoptosense ELISA therefore facilitates the determination of drug-induced apoptosis in human tumour xenografts in rodents using plasma samples, largely independently from host toxicity. Increases of caspase-cleaved CK18 were observed in plasma from different carcinoma xenograft models in response to anticancer drugs. The appearance caspase-cleaved CK18 in plasma was found to reflect formation of the caspase-cleaved epitope in FaDu head-neck carcinomas and in cultured cells. The M30-Apoptosense assay allows determination of tumour response in blood from xenograft models and from patients, providing a powerful tool for translational studies of anticancer drugs.
    • The spindle pole body plays a key role in controlling mitotic commitment in the fission yeast Schizosaccharomyces pombe.

      Hagan, Iain M; CRUK (Cancer Research UK) Cell Division Laboratory, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ihagan@picr.man.ac.uk (2008-10)
      Commitment to mitosis is regulated by a conserved protein kinase complex called MPF (mitosis-promoting factor). MPF activation triggers a positive-feedback loop that further promotes the activity of its activating phosphatase Cdc25 and is assumed to down-regulate the MPF-inhibitory kinase Wee1. Four protein kinases contribute to this amplification loop: MPF itself, Polo kinase, MAPK (mitogen-activated protein kinase) and Greatwall kinase. The fission yeast SPB (spindle pole body) component Cut12 plays a critical role in modulating mitotic commitment. In this review, I discuss the relationship between Cut12 and the fission yeast Polo kinase Plo1 in mitotic control. These results indicate that commitment to mitosis is co-ordinated by control networks on the spindle pole. I then describe how the Cut12/Plo1 control network links growth control signalling from TOR (target of rapamycin) and MAPK networks to the activation of MPF to regulate the timing of cell division.
    • SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1.

      Woodcock, Simon A; Rooney, Claire M; Liontos, Michalis; Connolly, Yvonne; Zoumpourlis, Vassilis; Whetton, Anthony D; Gorgoulis, Vassilis G; Malliri, Angeliki; Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, University of Manchester, Manchester, UK. (2009-03-13)
      The Rac activator Tiam1 is required for adherens junction (AJ) maintenance, and its depletion results in AJ disassembly. Conversely, the oncoprotein Src potently induces AJ disassembly and epithelial-mesenchymal transition (EMT). Here, we show that Tiam1 is phosphorylated on Y384 by Src. This occurs predominantly at AJs, is required for Src-induced AJ disassembly and cell migration, and creates a docking site on Tiam1 for Grb2. We find that Tiam1 is associated with ERK. Following recruitment of the Grb2-Sos1 complex, ERK becomes activated and triggers the localized degradation of Tiam1 at AJs, likely involving calpain proteases. Furthermore, we demonstrate that, in human tumors, Y384 phosphorylation positively correlates with Src activity, and total Tiam1 levels are inversely correlated. Thus, our data implicate Tiam1 phosphorylation and consequent degradation in Src-mediated EMT and resultant cell motility and establish a paradigm for regulating local concentrations of Rho-GEFs.
    • The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF.

      Pearson, Stella; Sroczynska, Patrycja; Lacaud, Georges; Kouskoff, Valerie; Cancer Research UK, Paterson Institute for Cancer Research, Manchester University, Wilmslow Road, M20 4BX, Manchester, UK. (2008-04)
      The differentiation of embryonic stem (ES) cells offers a powerful approach to study mechanisms implicated in cell fate decision. A major hurdle, however, is to promote the directed and efficient differentiation of ES cells toward a specific lineage. Here, we define in serum-free media the minimal factor requirement controlling each step of the differentiation process, resulting in the production of highly enriched hematopoietic progenitors. Four factors - Bmp4, activin A, bFGF (Fgf2) and VEGF (VegfA) - are sufficient to drive the selective and efficient differentiation of mouse ES cells to hematopoiesis. Each of these factors appears to regulate a step of the process: Bmp4 promotes the very efficient formation of mesoderm; bFGF and activin A induce the differentiation of these mesodermal precursors to the hemangioblast fate; and VEGF is required for the production of fully committed hematopoietic progenitors. The stimulation of mesodermal precursors by bFGF and activin A switches on very rapidly the hematopoietic program, allowing us to dissect the molecular events leading to the formation of the hemangioblast. Runx1, Scl (Tal1) and Hhex expression is upregulated within 3 hours of stimulation, whereas upregulation of Lmo2 and Fli1 is observed later. Interestingly, increased expression levels of genes such as cMyb, Pu.1 (Sfpi1), Gata1 and Gata2 are not observed at the onset of hemangioblast commitment. This stepwise control of differentiation is extremely efficient, giving rise to a very high frequency of hematopoietic precursors, and provides an optimal system for understanding the molecular machineries involved in blood progenitor commitment.
    • Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in S. pombe.

      Robertson, Alasdair M; Hagan, Iain M; CRUK Cell Division Laboratory, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. (2008-12-15)
      The cell-integrity and stress-response MAP kinase pathways (CIP and SRP, respectively) are stimulated by various environmental stresses. Ssp1 kinase modulates actin dynamics and is rapidly recruited to the plasma membrane following osmotic stress. Here, we show that osmotic stress arrested tip growth, induced the deposition of abnormal cell-wall deposits at tips and led to disassociation of F-actin foci from cell tips together with a reduction in the amount of F-actin in these foci. Osmotic stress also ;froze' the dynamics of interphase microtubule bundles, with microtubules remaining static for approximately 38 minutes (at 30 degrees C) before fragmenting upon return to dynamic behaviour. The timing with which microtubules resumed dynamic behaviour relied upon SRP activation of Atf1-mediated transcription, but not on either CIP or Ssp1 signalling. Analysis of the recovery of tip growth showed that: (1) the timing of recovery was controlled by SRP-stimulated Atf1 transcription; (2) re-establishment of polarized tip growth was absolutely dependent upon SRP and partially dependent upon Ssp1 signalling; and (3) selection of the site for polarized tip extension required Ssp1 and the SRP-associated polarity factor Wsh3 (also known as Tea4). CIP signalling did not impact upon any aspect of recovery. The normal kinetics of tip growth following osmotic stress of plo1.S402A/E mutants established that SRP control over the resumption of tip growth after osmotic stress is distinct from its control of tip growth following heat or gravitational stresses.
    • Suppressor role of activating transcription factor 2 (ATF2) in skin cancer.

      Bhoumik, Anindita; Fichtman, Boris; Derossi, Charles; Breitwieser, Wolfgang; Kluger, Harriet M; Davis, Sean; Subtil, Antonio; Meltzer, Paul; Krajewski, Stan; Jones, Nic; et al. (2008-02-05)
      Activating transcription factor 2 (ATF2) regulates transcription in response to stress and growth factor stimuli. Here, we use a mouse model in which ATF2 was selectively deleted in keratinocytes. Crossing the conditionally expressed ATF2 mutant with K14-Cre mice (K14.ATF2(f/f)) resulted in selective expression of mutant ATF2 within the basal layer of the epidermis. When subjected to a two-stage skin carcinogenesis protocol [7,12-dimethylbenz[a]anthracene/phorbol 12-tetradecanoate 13-acetate (DMBA/TPA)], K14.ATF2(f/f) mice showed significant increases in both the incidence and prevalence of papilloma development compared with the WT ATF2 mice. Consistent with these findings, keratinocytes of K14.ATF2(f/f) mice exhibit greater anchorage-independent growth compared with ATF2 WT keratinocytes. Papillomas of K14.ATF2(f/f) mice exhibit reduced expression of presenilin1, which is associated with enhanced beta-catenin and cyclin D1, and reduced Notch1 expression. Significantly, a reduction of nuclear ATF2 and increased beta-catenin expression were seen in samples of squamous and basal cell carcinoma, as opposed to normal skin. Our data reveal that loss of ATF2 transcriptional activity serves to promote skin tumor formation, thereby indicating a suppressor activity of ATF2 in skin tumor formation.
    • To determine the cytotoxicity of chlorambucil and one of its nitro-derivatives, conjugated to prasterone and pregnenolone, towards eight human cancer cell-lines.

      Shervington, Leroy A; Smith, Nigel K; Norman, Emma; Ward, Timothy H; Phillips, Roger M; Shervington, Amal; School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, UK. lashervington@uclan.ac.uk (2009-07)
      Four ester prodrugs derived from the bifunctional alkylating agent chlorambucil, and one of its nitro-derivatives, 3-nitrochlorambucil conjugated to prasterone and pregnenolone, were synthesized and tested for their cytotoxic activity against eight human cell lines, using the standard MTT assay. A comparison between the esters and the controls, namely chlorambucil and 3-nitrochlorambucil would suggest that all four esters possess to varying degrees, specificity towards the breast adenocarcinoma cell line (MDA-mb468) than the other seven cells' lines tested. The overall findings are encouraging since it infers that these lipophilic esters not only have the ability to traverse specific cell membranes but also exhibit cytotoxicity towards most of the cell lines tested.
    • The transcription factor Atf1 binds and activates the APC/C ubiquitin ligase in fission yeast.

      Ors, Aslihan; Grimaldi, Margaret; Kimata, Yuu; Wilkinson, Caroline R M; Jones, Nic; Yamano, Hiroyuki; Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom. (2009-09-04)
      Fission yeast Atf1 is a member of the ATF/CREB basic leucine zipper (bZIP) family of transcription factors with strong homology to mammalian ATF2. Atf1 regulates transcription in response to stress stimuli and also plays a role in controlling heterochromatin formation and recombination. However, its DNA binding independent role is poorly studied. Here, we report that Atf1 has a distinct role in regulating the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. We have identified atf1(+) as a dose-dependent suppressor of apc5-1, a mutation causing mitotic arrest. Remarkably, the suppression is not dependent upon the bZIP domain and is therefore independent of the ability of Atf1 to bind DNA. Interestingly, Atf1 physically binds the APC/C in vivo. Furthermore, we show that addition of purified Atf1 proteins into a cell-free system stimulates ubiquitylation of cyclin B and securin by the APC/C. These results reveal a novel role for Atf1 in cell cycle control through protein-protein interaction.