All Paterson Institute for Cancer Research: Recent submissions
Now showing items 1-20 of 5030
-
Relation extraction in underexplored biomedical domains: a diversity-optimized sampling and synthetic data generation approachThe sparsity of labeled data is an obstacle to the development of Relation Extraction (RE) models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the literature on natural products, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such an overlooked topic. To mark the start of this new task, we created the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets. To this end, we developed a new sampler, inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler (https://github.com/idiap/gme-sampler). The strategic optimization of both balance and diversity of the selected items in the evaluation set is important given the resource-intensive nature of manual curation. After quantifying the noise in the training set, in the form of discrepancies between the text of input abstracts and the expected output labels, we explored different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we evaluated the performance of standard fine-tuning (BioGPT, GPT-2, and Seq2rel) and few-shot learning with open Large Language Models (LLMs) (LLaMA 7B-65B). In addition to their evaluation in few-shot settings, we explore the potential of open LLMs as synthetic data generators and propose a new workflow for this purpose. All evaluated models exhibited substantial improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We provide our best performing (F1-score = 59.0) BioGPT-Large model for end-to-end RE of natural products relationships along with all the training and evaluation datasets. See more details at https://github.com/idiap/abroad-re.
-
Targeting GOF p53 and c-MYC through LZK inhibition or degradation suppresses head and neck tumor growthThe worldwide frequency of head and neck squamous cell carcinoma (HNSCC) is approximately 800,000 new cases, with 430,000 deaths annually. We determined that LZK (encoded by MAP3K13) is a therapeutic target in HNSCC and showed that inhibition with small molecule inhibitors decreases the viability of HNSCC cells with amplified MAP3K13. A drug-resistant mutant of LZK blocks decreases in cell viability due to LZK inhibition, indicating on-target activity by two separate small molecules. Inhibition of LZK catalytic activity suppressed tumor growth in HNSCC PDX models with amplified MAP3K13. We found that the kinase activity of LZK stabilized c-MYC and that LZK stabilized gain-of-function (GOF) p53 through a kinase-independent mechanism. Therefore, we designed proteolysis-targeting chimeras (PROTACs) and demonstrate that our lead PROTAC promotes LZK degradation and suppresses expression of GOF p53 and c-MYC leading to impaired viability of HNSCC cell lines. This research provides a strong basis for development of therapeutics targeting LZK in HNSCCs with amplification of the gene.
-
Natural killer cells are required for the recruitment of CD8+ T cells and the efficacy of immune checkpoint blockade in melanoma brain metastasesBackground Brain metastases (BrM) affect up to 60% of patients with metastatic melanoma and are associated with poor prognosis. While combined immune checkpoint blockade of programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) demonstrates intracranial efficacy in a proportion of patients with melanoma, the responses are rarely durable, particularly in patients with symptomatic BrM. The brain is an immune-specialized organ and immune responses are regulated differently to the periphery.Methods Using our previously established two-site model of melanoma BrM with concomitant intracranial and extracranial tumors, in which clinically observed efficacy of the combined PD-1/CTLA-4 (PC) blockade can be reproduced, we here explored the role of natural killer (NK) cells in BrM, using functional studies, immunophenotyping and molecular profiling.Results We demonstrate that NK cells are required for the intracranial efficacy of PC blockade. While both perforin and interferon gamma were necessary for the PC blockade-dependent control of intracranial tumor growth, NK cells isolated from intracranial tumors demonstrated only a limited cancer cell killing ability, and PC blockade did not alter the abundance of NK cells within tumors. However, the depletion of NK cells in PC blockade-treated mice led to tumor molecular profiles reminiscent of those observed in intracranial tumors that failed to respond to therapy. Furthermore, the depletion of NK cells resulted in a strikingly reduced abundance of CD8+ T cells within intracranial tumors, while the abundance of other immune cell populations including CD4+ T cells, macrophages and microglia remained unaltered. Adoptive T cell transfer experiments demonstrated that PC blockade-induced trafficking of CD8+ T cells to intracranial tumors was chemokine-dependent. In line with this, PC blockade enhanced intratumoral expression of several T cell-attracting chemokines and we observed high expression levels of cognate chemokine receptors on BrM-infiltrating CD8+ T cells in mice, as well as in human BrM. Importantly, the depletion of NK cells strikingly reduced the intratumoral expression levels of T cell attracting chemokines and vascular T cell entry receptors that were upregulated following PC blockade.Conclusion Our data demonstrate that NK cells underpin the efficacy of PC blockade in BrM by orchestrating the 'responder' molecular profile in tumors, and by controlling the intratumoral abundance of CD8+ T cells through regulation of multiple key molecular mediators of T cell trafficking.
-
A new cancer/testis long noncoding RNA, the OTP-AS1 RNAThe orthopedia homeobox (OTP) gene encodes a homeodomain-containing transcription factor involved in brain development. OTP is mapped to human chromosome 5q14.1. Earlier we described transcription in the second intron of this gene in wide variety of tumors, but among normal tissues only in testis. In GeneBank these transcripts are represented by several 300-400 nucleotide long AI267901-like ESTs. We assumed that the AI267901-like ESTs belonged to the longer transcript(s). We used the Rapid Amplification of cDNA Ends (RACE) approach and other methods to find the full-length transcript. The transcript we found was a 2436 nucleotide polyadenylated sequence in antisense to OTP gene. The corresponding gene consisted of two exons separated by an intron of 2961 bp. The first exon was found to be 91 bp long and located in the third exon of OTP. The second exon was 2345 bp long and located in the second intron of OTP. We have shown the expression of this gene in many human tumors but as few as a single sample of normal testis. The transcript lacked significant ORFs suggesting that we discovered a new antisense cancer/testis (CT) sequence OTP-AS1 (OTP-antisense RNA 1), which belongs to the class of long noncoding RNAs (lncRNAs). According to our findings we assume that OTP-AS1 and OTP genes may be a CT-coding gene/CT-ncRNA pair, or sense-antisense gene pair involved in regulatory interactions.
-
Human papillomavirus (HPV) genotypes in mixed squamous cell carcinoma of the penis: a study of 101 tumorsSquamous cell carcinomas with two or more coexisting clearly different histological subtypes of penile carcinomas are designated as mixed carcinomas in current classification models. They represent about 10% of all penile carcinomas. The aim of this study was to detect HPV genotypes in these unusual tumors. Tumors were selected from an international series of 1010 patients with penile carcinomas. Mixed carcinomas were grouped, according to WHO recommendations, as follows: 1. Carcinomas with warty/basaloid features mixed with HPV-independent carcinomas and 2. HPV-independent subtypes mixed with each other. HPV detection and p16(INK4a) immunostaining were performed. For HPV detection, whole tissue section-PCR analyses were performed by SPF10-DEIA-LiPA25 (version 1). As expected, HPV was detected more frequently in HPV-associated mixed carcinomas than in HPV-independent mixed carcinomas. Carcinomas with basaloid or warty features mixed with other SCC subtypes showed an HPV positivity rate of 46% (33 of 72 tumors) compared with 7% found in tumors with nonwarty/basaloid morphology (2 of 29 tumors). Eleven high-risk HPV genotypes were identified and the most common was HPV16 (65%) usually associated with basaloid morphology. p16(INK4a) immunostaining was positive in 76% of HPV-positive tumors. As in nonmixed carcinomas, although in lower proportion, a variable array of HPV genotypes was detected in mixed carcinomas. Apparently, the presence of a non-HPV component in an otherwise typical HPV-associated type tumor does adversely affect the prevalence of HPV positivity. Any amount of HPV-associated morphology superior to 20% in a mixed tumor is sufficient to classify them as HPV-associated, a WHO requirement.
-
Genomes and epigenomes of matched normal and tumor breast tissue reveal diverse evolutionary trajectories and tumor-host interactionsNormal tissues adjacent to the tumor (NATs) may harbor early breast carcinogenesis events driven by field cancerization. Although previous studies have characterized copy-number (CN) and transcriptomic alterations, the evolutionary history of NATs in breast cancer (BC) remains poorly characterized. Utilizing whole-genome sequencing (WGS), methylation profiling, and RNA sequencing (RNA-seq), we analyzed paired germline, NATs, and tumor samples from 43 individuals with BC in Hong Kong (HK). We found that single-nucleotide variants (SNVs) were common in NATs, with one-third of NAT samples exhibiting SNVs in driver genes, many of which were present in paired tumor samples. The most frequently mutated genes in both tumor and NAT samples were PIK3CA, TP53, GATA3, and AKT1. In contrast, large-scale aberrations such as somatic CN alterations (SCNAs) and structural variants (SVs) were rarely detected in NAT samples. We generated phylogenetic trees to investigate the evolutionary history of paired NAT and tumor samples. They could be categorized into tumor only, shared, and multiple-tree groups, the last of which is concordant with non-genetic field cancerization. These groups exhibited distinct genomic and epigenomic characteristics in both NAT and tumor samples. Specifically, NAT samples in the shared-tree group showed higher number of mutations, while NAT samples belonging to the multiple-tree group showed a less inflammatory tumor microenvironment (TME), characterized by a higher proportion of regulatory T cells (Tregs) and lower presence of CD14 cell populations. In summary, our findings highlight the diverse evolutionary history in BC NAT/tumor pairs and the impact of field cancerization and TME in shaping the genomic evolutionary history of tumors.
-
The small inhibitor WM-1119 effectively targets KAT6A-rearranged AML, but not KMT2A-rearranged AML, despite shared KAT6 genetic dependencyBACKGROUND: The epigenetic factors KAT6A (MOZ/MYST3) and KMT2A (MLL/MLL1) interact in normal hematopoiesis to regulate progenitors' self-renewal. Both proteins are recurrently translocated in AML, leading to impairment of critical differentiation pathways in these malignant cells. We evaluated the potential of different KAT6A therapeutic targeting strategies to alter the growth of KAT6A and KMT2A rearranged AMLs. METHODS: We investigated the action and potential mechanisms of the first-in-class KAT6A inhibitor, WM-1119 in KAT6A and KMT2A rearranged (KAT6Ar and KMT2Ar) AML using cellular (flow cytometry, colony assays, cell growth) and molecular (shRNA knock-down, CRISPR knock-out, bulk and single-cell RNA-seq, ChIP-seq) assays. We also used two novel genetic murine KAT6A models combined with the most common KMT2Ar AML, KMT2A
-
Waist circumference-years and cancer risk: a prospective study of the association and comparison of predictive performance with waist circumference and body mass indexBACKGROUND: Associations of waist circumferences (WC) and body mass index (BMI) measured once or over time, with cancer incidence were studied. WC is associated with some cancers independent of BMI. Analyses of cumulative central adiposity and cancer are lacking. We investigated associations between waist circumference-years, incorporating exposure time to WC ≥ 102 cm in men or ≥88 cm in women, and cancer, and compared this with single WC or BMI. METHODS: Serial WC measurements taken over 9 years in the prospective Atherosclerosis Risk in Communities Study (ARIC) predicted yearly WC. Cox proportional hazards regression estimated hazard ratios (HRs) of cancer incidence for waist circumference-years, WC or BMI, measured in Visit 4. Harrell's C-statistic quantified metric predictive performances. RESULTS: 10,172 participants were followed up from Visit 4 for cancer over a median 13.7 for men and 15.8 years for women. For obesity-related cancers, HRs per standard deviation waist circumference-years were 1.14 (95%CI:1.04,1.25) and 1.19 (95%CI:1.12,1.27), respectively. Differences in metric predictive performances were marginal. DISCUSSION: This is the first study to identify positive associations between waist circumference-years and cancer. Waist circumference-years did not provide additional information on cancer risk beyond that of WC and BMI. BMI is routinely measured in clinic so it may be preferred over WC.
-
Ribosome quality control mitigates the cytotoxicity of ribosome collisions induced by 5-fluorouracilRibosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment.
-
Simultaneous visualization of R-Loops/RNA:DNA hybrids and replication forks in a DNA combing assayR-loops, structures that play a crucial role in various biological processes, are integral to gene expression, the maintenance of genome stability, and the formation of epigenomic signatures. When these R-loops are deregulated, they can contribute to the development of serious health conditions, including cancer and neurodegenerative diseases. The detection of R-loops is a complex process that involves several approaches. These include S9.6 antibody- or RNAse H-based immunoprecipitation, non-denaturing bisulfite footprinting, gel electrophoresis, and electron microscopy. Each of these methods offers unique insights into the nature and behavior of R-loops. In our study, we introduce a novel protocol that has been developed based on a single-molecule DNA combing assay. This innovative approach allows for the direct and simultaneous visualization of RNA:DNA hybrids and replication forks, providing a more comprehensive understanding of these structures. Our findings confirm the transcriptional origin of the hybrids, adding to the body of knowledge about their formation. Furthermore, we demonstrate that these hybrids have an inhibitory effect on the progression of replication forks, highlighting their potential impact on DNA replication and cellular function.
-
The effect of tumor composition on the success of adaptive therapy: the case of metastatic castrate-resistant prostate cancerProstate-specific antigen (PSA) is the most commonly used serum marker for prostate cancer. It plays a role in cancer detection, treatment monitoring, and more recently, in guiding adaptive therapy protocols, where treatment is alternated based on PSA levels. However, the relationship between PSA levels and tumor volume remains poorly understood. Empirical evidence suggests that different cancer cell types produce varying amounts of PSA. Despite this, current mathematical cancer models often assume either that all cell types contribute equally to PSA levels or that only certain subpopulations produce PSA at fixed rates. In this study, we compare Zhang et al.'s classical adaptive therapy protocol with the standard of care, which involves continuous maximum tolerable dose treatment, under different assumptions regarding PSA production. Specifically, we explore the possibility that testosterone-dependent, testosterone-producing, and testosterone-independent cells contribute to PSA production to varying degrees. We use the time to competitive release as a proxy for the time to disease progression. Our findings indicate that adaptive therapy consistently results in a longer time to competitive release compared to the standard of care, regardless of the assumptions about PSA production. However, when testosterone-independent cells are the sole PSA producers, Zhang et al.'s adaptive therapy protocol becomes inapplicable, as PSA levels never fall to half of their initial value, preventing therapy discontinuation. Additionally, we observe that the number and duration of treatment cycles in adaptive therapy are highly sensitive to assumptions about how much each cell type contributes to PSA production. Overall, our results emphasize the need for a deeper understanding of patient-specific PSA dynamics, which could enhance the effectiveness of adaptive therapy in prostate cancer treatment.
-
Prevalence, antimicrobial resistance and genomic comparison of non-typhoidal salmonella isolated from pig farms with different levels of intensification in yangon region, MyanmarIn Myanmar, where backyard, semi-intensive, and intensive pig (Sus scrofa domesticus) farming coexist, there is limited understanding of the zoonotic risks and antimicrobial resistance (AMR) associated with these farming practices. This study was conducted to investigate the prevalence, AMR and genomic features of Salmonella in pig farms in the Yangon region and the impact of farm intensification to provide evidence to support risk-based future management approaches. Twenty-three farms with different production scales were sampled for two periods with three sampling-visit each. Antimicrobial susceptibility tests and whole-genome sequencing were performed on the isolates. The prevalence of Salmonella was 44.5% in samples collected from backyard farms, followed by intensive (39.5%) and semi-intensive farms (19.5%). The prevalence of multi-drug resistant isolates from intensive farms (45/84, 53.6%) was higher than those from backyard (32/171, 18.7%) and semi-intensive farms (25/161, 15.5%). Among 28 different serovars identified, S. Weltevreden (40; 14.5%), S. Kentucky (38; 13.8%), S. Stanley (35, 12.7%), S. Typhimurium (22; 8.0%) and S. Brancaster (20; 7.3%) were the most prevalent serovars and accounted for 56.3% of the genome sequenced strains. The diversity of Salmonella serovars was highest in semi-intensive and backyard farms (21 and 19 different serovars, respectively). The high prevalence of globally emerging S. Kentucky ST198 was detected on backyard farms. The invasive-infection linked typhoid-toxin gene (cdtB) was found in the backyard farm isolated S. Typhimurium, relatively enriched in virulence and AMR genes, presented an important target for future surveillance. While intensification, in terms of semi-intensive versus backyard production, maybe a mitigator for zoonotic risk through a lower prevalence of Salmonella, intensive production appears to enhance AMR-associated risks. Therefore, it remains crucial to closely monitor the AMR and virulence potential of this pathogen at all scales of production. The results underscored the complex relationship between intensification of animal production and the prevalence, diversity and AMR of Salmonella from pig farms in Myanmar.
-
Mining nucleic acid 'omics' to boost liquid biopsy in cancerTreatments for cancer patients are becoming increasingly complex, and there is a growing desire from clinicians and patients for biomarkers that can account for this complexity to support informed decisions about clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining the different layers of 'omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy has increasing potential in a range of clinical applications, and for improving our understanding of treatment response and resistance. Here, we detail the recent developments and methods allowing exploration of genomic, epigenomic, transcriptomic, and fragmentomic layers of 'omics from liquid biopsy, and their integration in a range of applications. We also consider the specific challenges that are posed by the clinical implementation of multi-omic liquid biopsies.
-
Analysis toolkit for evaluation of drug titration practice in acute lymphoblastic leukemia maintenanceOBJECTIVE: During the 2-year maintenance treatment phase (MT) of acute lymphoblastic leukemia (ALL), personalized patient-specified titration of oral antimetabolite drug doses is required to ensure maximum tolerated systemic drug exposure. Drug titration is difficult to implement in practice and insufficient systemic drug exposure resulting from inadequate dose titration increases risk of ALL relapse. MATERIALS AND METHODS: We developed an open-source R-based analytical toolkit, including the allMT R package and an interactive web-based R Shiny VIATAMIN application, to evaluate antimetabolite drug titration during MT. RESULTS: Evaluation is initiated with basic visualization analysis of drug titration, in both individual patients and patient cohorts. Observations are supplemented with descriptive analyses of hematological toxicity frequency and prescriber compliance rates with protocol drug titration rules. In individual patients, visual and quantitative analyses indicate recurring potentially correctable suboptimal drug titration patterns. In patient cohorts, the toolkit enables evaluation of the impact of interventions to optimize MT drug titration. DISCUSSION: Incorporation of the toolkit in a forthcoming clinical decision support system for MT would enable real-time examination and course correction of drug titration practice. CONCLUSION: Future versions will be enhanced to include other variables that influence drug titration practice, including clinical toxicity data and later, pharmacological markers of antimetabolite, adherence, and drug activity.
-
Large language models, scientific knowledge and factuality: a framework to streamline human expert evaluationOBJECTIVE: The paper introduces a framework for the evaluation of the encoding of factual scientific knowledge, designed to streamline the manual evaluation process typically conducted by domain experts. Inferring over and extracting information from Large Language Models (LLMs) trained on a large corpus of scientific literature can potentially define a step change in biomedical discovery, reducing the barriers for accessing and integrating existing medical evidence. This work explores the potential of LLMs for dialoguing with biomedical background knowledge, using the context of antibiotic discovery. METHODS: The framework involves three evaluation steps, each assessing different aspects sequentially: fluency, prompt alignment, semantic coherence, factual knowledge, and specificity of the generated responses. By splitting these tasks between non-experts and experts, the framework reduces the effort required from the latter. The work provides a systematic assessment on the ability of eleven state-of-the-art LLMs, including ChatGPT, GPT-4 and Llama 2, in two prompting-based tasks: chemical compound definition generation and chemical compound-fungus relation determination. RESULTS: Although recent models have improved in fluency, factual accuracy is still low and models are biased towards over-represented entities. The ability of LLMs to serve as biomedical knowledge bases is questioned, and the need for additional systematic evaluation frameworks is highlighted. CONCLUSION: While LLMs are currently not fit for purpose to be used as biomedical factual knowledge bases in a zero-shot setting, there is a promising emerging property in the direction of factuality as the models become domain specialised, scale up in size and level of human feedback.
-
Comparison of cell-free and small extracellular-vesicle-associated DNA by sequencing plasma of lung cancer patientsBlood contains multiple analytes that can be used as liquid biopsy to analyze cancer. Mutations have been detected in DNA associated with small extracellular vesicles (sEVs). The genome-wide composition and structure of sEV DNA remains poorly characterized, and whether sEVs are enriched in tumor signal compared to cell-free DNA (cfDNA) is unclear. Here, using whole-genome sequencing from lung cancer patients we determined that the tumor fraction and heterogeneity are comparable between DNA associated with sEV (<200 nm) and matched plasma cfDNA. sEV DNA, obtained with size-exclusion chromatography, is composed of short ∼150-180 bp fragments and long >1000 bp fragments poor in tumor signal. The structural patterns of sEV DNA are related to plasma cfDNA. Mitochondrial DNA is relatively enriched in the sEV fractions. Our results suggest that DNA associated to sEV (including exosomes) is not preferentially enriched in tumor signal and is less abundant than cfDNA.
-
Trends in invasive melanoma thickness in Norway, 1983-2019Monitoring melanoma incidence time trends by tumour thickness is essential to understanding the evolution of melanoma occurrence and guiding prevention strategies. To assess long-term incidence trends, tumour thickness was extracted from pathology reports in the Cancer Registry of Norway (1983-2007) and the Norwegian Melanoma Registry (2008-2019), n = 45,635 patients. Across all anatomic sites, T1 (≤ 1 mm) incidence increased most (men annual percentage change [AAPC] = 4.6, 95% confidence interval [95% CI] 4.2-5.0; women AAPC = 3.2, 95% CI 2.8-3.6); the increase was steep until 1989/90, followed by a plateau, and a further steep increase from 2004/05. Increased incidence was also observed for T2 (>1.0-2.0) melanoma (men AAPC = 2.8, 95% CI 2.4-3.2; women AAPC = 1.5, 95% CI 1.1-1.9), and T3 (>2.0-4.0) in men (AAPC = 1.4, 95% CI 0.9-1.9). T4 (>4.0) melanoma followed a similar overall pattern (men AAPC = 1.3, 95% CI 0.9-1.7, head/neck, upper limbs, and trunk; women AAPC = 0.9, 95% CI 0.4-1.4, upper limbs and trunk). Men had the highest T3 and T4 incidence and the sex difference increased with age. Regarding birth cohorts, age-specific incidence increased in all T categories in the oldest age groups, while stabilizing in younger patients born after 1950. Overall, the steep increase in T1 melanoma was not accompanied by a decrease in thick melanoma.
-
Conserved role of FOXC1 in TNBC is parallel to FOXA1 in ER+ breast cancerTriple-negative breast cancer (TNBC) is characterized by lack of the estrogen (ER) receptor, progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), and standard receptor-targeted therapies are ineffective. FOXC1, a transcription factor aberrantly overexpressed in many cancers, drives growth, metastasis, and stem-cell-like properties in TNBC. However, the molecular function of FOXC1 is unknown, partly due to heterogeneity of TNBC. Here, we show that although FOXC1 regulates many cancer hallmarks in TNBC, its function is varied in different cell lines, highlighted by the differential response to CDK4/6 inhibitors upon FOXC1 loss. Despite this functional heterogeneity, we show that FOXC1 regulates key oncogenes and tumor suppressors and identify a set of core FOXC1 peaks conserved across TNBC cell lines. We identify the ER-associated and drug-targetable nuclear receptor NR2F2 as a cofactor of FOXC1. Finally, we show that core FOXC1 targets in TNBC are regulated in parallel by the pioneer factor FOXA1 and the nuclear receptor NR2F2 in ER + breast cancer.