• Biological effect of silver-modified nanostructured titanium dioxide in cancer

      Lagopati, N.; Kotsinas, A.; Veroutis, D.; Evangelou, K.; Papaspyropoulos, A.; Arfanis, M.; Falaras, P.; Kitsiou, P. V.; Pateras, I.; Bergonzini, A.; et al. (2021)
      Background/aim: Nanomedicine is a promising scientific field that exploits the unique properties of innovative nanomaterials, providing alternative solutions in diagnostics, prevention and therapeutics. Titanium dioxide nanoparticles (TiO2 NPs) have a great spectrum of photocatalytic antibacterial and anticancer applications. The chemical modification of TiO2 optimizes its bioactive performance. The aim of this study was the development of silver modified NPs (Ag/TiO2 NPs) with anticancer potential. Materials and methods: Ag/TiO2 NPs were prepared through the sol-gel method, were fully characterized and were tested on cultured breast cancer epithelial cells (MCF-7 and MDA-MB-231). The MTT colorimetric assay was used to estimate cellular viability. Western blot analysis of protein expression along with a DNA-laddering assay were employed for apoptosis detection. Results and conclusion: We show that photo-activated Ag/TiO2 NPs exhibited significant cytotoxicity on the highly malignant MDA-MB-231 cancer cells, inducing apoptosis, while MCF-7 cells that are characterized by low invasive properties were unaffected under the same conditions.
    • Regulatory and functional involvement of long non-coding RNAs in DNA double-strand break repair mechanisms

      Papaspyropoulos, A.; Lagopati, N.; Mourkioti, I.; Angelopoulou, A.; Kyriazis, S.; Liontos, M.; Gorgoulis, Vassilis G; Kotsinas, A.; Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece. (2021)
      Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.