• Cell surface 5T4 antigen is transiently upregulated during early human embryonic stem cell differentiation: effect of 5T4 phenotype on neural lineage formation.

      Ward, Christopher M; Eastham, Angela M; Stern, Peter L; Cancer Research UK Immunology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK. christopher.ward@manchester.ac.uk (2006-06-10)
      The 5T4 oncofoetal antigen is a cell surface glycoprotein that is transiently expressed during mouse ES cell differentiation and correlates with decreased pluripotency of such cells. We show that 5T4 antigen is transiently unregulated during HES4 and H1 human ES cell differentiation and its expression correlates with loss of the pluripotent markers OCT-4 and Tra-1-60 and upregulation of transcript markers associated with the three primary germ layers. To confirm that absence of cell surface 5T4 antigen represents a pluripotent hES cell phenotype, we performed mechanical transfer of either 5T4-ve or 5T4+ve HES4 colonies identified using live cell staining. 5T4-ve transfers maintained expression of OCT-4 in over 90% of resultant colonies, whereas 5T4+ve transfers exhibited significantly lower numbers of OCT-4-expressing colonies (92 +/- 1.4 vs. 2.9 +/- 2.0%). Interestingly, low cell density 5T4-ve colony transfers exhibited increased numbers of OCT-4-expressing colonies compared to large 5T4-ve transfers (92 +/- 1.4 vs. 63.2 +/- 1.9%). 5T4-ve and 5T4+ve HES4 and H1 ES cell lines expressed markers representative of neuroectoderm lineages, and we assessed the formation of neural lineages from these phenotypes in serum-containing medium and N2B27 medium. Expression of 5T4 was found to be inversely related to the yield of tyrosine-hydroxylase (TH+)-expressing neurons in N2B27 medium, with additional mesoderm and endoderm transcript markers detected. Homogeneous glial cell populations were derived from low cell density 5T4-ve colony transfers cultured in serum-containing medium, with TH+ neuronal formation inhibited in a cell-density-dependent manner. We conclude that the 5T4 antigen is a transient marker of hES cell differentiation and that 5T4 phenotype, colony seeding density and culture conditions significantly influence the maintenance of pluripotent hES cells and their differentiation to neural lineages.
    • E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells.

      Spencer, Helen L; Eastham, Angela M; Merry, Catherine L R; Southgate, Thomas D; Perez-Campo, Flor-Maria; Soncin, Francesca; Ritson, Sarah; Kemler, Rolf; Stern, Peter L; Ward, Christopher M; et al. (2007-08)
      Epithelial-mesenchymal transition (EMT) events occur during embryonic development and are important for the metastatic spread of epithelial tumors. We show here that spontaneous differentiation of mouse embryonic stem (ES) cells is associated with an E- to N-cadherin switch, up-regulation of E-cadherin repressor molecules (Snail and Slug proteins), gelatinase activity (matrix metalloproteinase [MMP]-2 and -9), and increased cellular motility, all characteristic EMT events. The 5T4 oncofetal antigen, previously shown to be associated with very early ES cell differentiation and altered motility, is also a part of this coordinated process. E- and N-cadherin and 5T4 proteins are independently regulated during ES cell differentiation and are not required for induction of EMT-associated transcripts and proteins, as judged from the study of the respective knockout ES cells. Further, abrogation of E-cadherin-mediated cell-cell contact in undifferentiated ES cells using neutralizing antibody results in a reversible mesenchymal phenotype and actin cytoskeleton rearrangement that is concomitant with translocation of the 5T4 antigen from the cytoplasm to the cell surface in an energy-dependent manner. E-cadherin null ES cells are constitutively cell surface 5T4 positive, and although forced expression of E-cadherin cDNA in these cells is sufficient to restore cell-cell contact, cell surface expression of 5T4 antigen is unchanged. 5T4 and N-cadherin knockout ES cells exhibit significantly decreased motility during EMT, demonstrating a functional role for these proteins in this process. We conclude that E-cadherin protein stabilizes cortical actin cytoskeletal arrangement in ES cells, and this can prevent cell surface localization of the promigratory 5T4 antigen.
    • Epithelial-mesenchymal transition events during human embryonic stem cell differentiation

      Eastham, Angela M; Spencer, Helen L; Soncin, Francesca; Ritson, Sarah; Merry, Catherine L R; Stern, Peter L; Ward, Christopher M; Centre for Molecular Medicine, Faculty of Medical and Human Sciences, The University of Manchester, M13 9PT, United Kingdom. (2007-12-01)
      Epithelial-mesenchymal transition (EMT) occurs during embryonic development and may also be associated with the metastatic spread of epithelial tumors. During EMT, E-cadherin is down-regulated and this correlates with increased motility and invasion of cells. We show that differentiation of human embryonic stem (ES) cells in monolayer culture is associated with an E- to N-cadherin switch, increased vimentin expression, up-regulation of E-cadherin repressor molecules (Snail and Slug proteins), and increased gelatinase (matrix metalloproteinases; MMP-2 and MMP-9) activity and cellular motility, all characteristic EMT events. The 5T4 oncofetal antigen, previously shown to be associated with early human ES cell differentiation, is also part of this process. Abrogation of E-cadherin-mediated cell-cell contact in undifferentiated ES cells using neutralizing antibody (nAb) SHE78.7 resulted in increased cellular motility, altered actin cytoskeleton arrangement and a mesenchymal phenotype together with presentation of the 5T4 antigen at the cell surface. nAb-treated ES cells remained in an undifferentiated state, as assessed by OCT-4 protein expression, and did not express EMT-associated transcripts. Removal of nAb from ES cells resulted in the restoration of cell-cell contact, absence of cell surface 5T4, decreased mesenchymal cellular morphology and motility, and enabled the differentiation of the cells to the three germ layers upon their removal from the fibroblast feeder layer. We conclude that E-cadherin functions in human ES cells to stabilize the cortical actin cyoskeletal arrangement and this prevents cell surface localization of the 5T4 antigen. Furthermore, human ES cells represent a useful model system with which to study EMT events relevant to embryonic development and tumor cell metastasis.
    • The ratio of initial/residual DNA damage predicts intrinsic radiosensitivity in seven cervix carcinoma cell lines.

      Marples, Brian; Longhurst, D; Eastham, Angela M; West, Catharine M L; Cancer Research Campaign Department of Experimental Radiation Oncology, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, UK. (1998-04)
      The single-cell gel electrophoresis (comet) assay was used to measure radiation-produced DNA double-strand breaks (dsbs) in a series of seven cervical tumour cell lines (ME180, HT3, C33A, C41, SiHa, MS751 and CaSki). The proportion of DNA dsbs was measured immediately after radiation treatment (initial damage) and 16 h later after incubation at 37 degrees C (residual damage). Linear dose-response curves were seen for initial (slopes 0.23-0.66) and residual (slopes 0.16-0.87) DNA dsbs. Neither of the slopes of the linear regression analysis on the initial and on the residual DNA dsbs dose-response curves (range 0-80 Gy) correlated with SF2 (surviving fraction at 2 Gy) measured after high- (HDR) or low-dose-rate (LDR) irradiation. An association was evident between SF2 after HDR and LDR irradiation and the ratio of the absolute level of initial and residual damage after a single dose of 60 Gy. However, a significant correlation was found between HDR (r= -0.78, P = 0.04) and LDR (r = -0.86, P = 0.03) SF2 values and the ratio of the slopes of the initial and residual DNA dsbs dose-response curves (range 0.47-0.99), representing the fraction of DNA damage remaining. These results indicate that the neutral comet assay can be used to predict radiosensitivity of cervical tumour cell lines by assessing the ratio of initial and residual DNA dsbs.
    • Relationships between clonogenic cell survival, DNA damage and chromosomal radiosensitivity in nine human cervix carcinoma cell lines.

      Eastham, Angela M; Atkinson, J; West, Catharine M L; CRC Experimental Radiation Oncology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK. (2001-03)
      PURPOSE: To compare clonogenic cell survival, DNA damage and chromosomal radiosensitivity in nine cervix carcinoma cell lines. MATERIALS AND METHODS: Initial and residual (after 24h repair) radiation-induced DNA damage was evaluated using pulsed field gel electrophoresis. Chromosome damage was measured by micronucleus (MN) induction in cytochalasin-B-induced binucleate cells. RESULTS: Significant differences between the cell lines were obtained in the induced levels of initial damage, residual damage and MN. Values for SF2 for the nine cell lines ranged from 0.36 to 0.92. No correlation was found between clonogenic measurements of radiosensitivity and initial DNA damage dose response slopes. However, borderline significant correlations were seen between clonogenic radiosensitivity data and the levels of residual DNA damage. There was no correlation between clonogenic radiosensitivity and the levels of radiation-induced MN. Cell lines with high levels of initial damage had high yields of MN induced by radiation and the correlation seen was significant. CONCLUSIONS: The poor correlation between the different endpoints precludes their use in a clinical setting on primary tumour samples in vitro. It may be that tumour cell lines in vitro are a poor model for tumours in vivo. Studies aimed at assessing assays for measuring tumour radiosensitivity therefore should employ clinical samples. In vitro cell line work should concentrate on unravelling the complex mechanisms involved in determining a radiosensitive or radioresistant phenotype.