• Outcomes of patients with childhood B-cell precursor acute lymphoblastic leukaemia with late bone marrow relapses: long-term follow-up of the ALLR3 open-label randomised trial

      Parker, Catriona; Krishnan, Shekhar; Hamadeh, L; Irving, JAE; Kuiper, RP; Revesz, T; Hoogerbrugge, P; Hancock, J; Sutton, R; Moorman, AV; et al. (2019)
      BACKGROUND: The ALLR3 trial investigated outcomes of children with B-cell precursor acute lymphoblastic leukaemia who had late bone marrow relapses. We analysed long-term follow-up outcomes of these patients. METHODS: ALLR3 was an open-label randomised clinical trial that recruited children aged 1-18 years with B-cell precursor acute lymphoblastic leukaemia who had late bone marrow relapses. Eligible patients were recruited from centres in Australia, Ireland, the Netherlands, New Zealand, and the UK. Patients were randomly assigned from Jan 31, 2003, to Dec 31, 2007, and the trial closed to recruitment on Oct 31, 2013. Randomly assigned patients were allocated to receive either idarubicin or mitoxantrone in induction by stratified concealed randomisation; after randomisation stopped in Dec 31, 2007, all patients were allocated to receive mitoxantrone. After three blocks of therapy, patients with high minimal residual disease (?10-4 cells) at the end of induction were allocated to undergo allogeneic stem-cell transplantation and those with low minimal residual disease (<10-4 cells) at the end of induction were allocated to receive chemotherapy. Minimal residual disease level was measured by real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements. The primary endpoint of the original ALLR3 clinical trial was progression-free survival of randomly assigned patients. The primary endpoint of this long-term follow-up analysis was progression-free survival of patients with late bone marrow relapses stratified by minimal residual disease level. Outcomes were correlated with age, site, time to recurrence, and genetic subtypes, and analysed by both intention to treat and actual treatment received. This trial is registered on the ISRCTN registry, number ISRCTN45724312, and on ClinicalTrials.gov, number NCT00967057. FINDINGS: Between Feb 2, 2003, and Oct 28, 2013, 228 patients with B-cell precursor acute lymphoblastic leukaemia and late bone marrow relapses were treated. After a median follow-up of 84 months (IQR 48-109), progression-free survival of all randomly assigned patients was 60% (95% CI 54-70). 220 patients achieved second complete remission, and minimal residual disease was evaluable in 192 (87%). 110 patients with late bone marrow relapses and high minimal residual disease at the end of induction were allocated to undergo stem-cell transplantation, and 82 patients with low minimal residual disease at the end of induction were allocated to receive chemotherapy. In the patients allocated to undergo stem-cell transplantation, four relapses and three deaths were reported before the procedure, and 11 patients were not transplanted. Of the 92 patients transplanted, 58 (63%) remained in second complete remission, 13 (14%) died of complications, and 21 (23%) relapsed after stem-cell transplantation. In patients allocated to receive chemotherapy, one early treatment-related death was reported and 11 patients were transplanted. Of the 70 patients who continued on chemotherapy, 49 (70%) remained in second complete remission, two (3%) died of complications, and 19 (27%) relapsed. Progression-free survival at 5 years was 56% (95% CI 46-65) in those with high minimal residual disease and 72% (60-81) in patients with low minimal residual disease (p=0·0078). Treatment-related serious adverse events were not analysed in the long-term follow-up. INTERPRETATION: Patients with B-cell precursor acute lymphoblastic leukaemia with late bone marrow relapses and low minimal residual disease at end of induction had favourable outcomes with chemotherapy without undergoing stem-cell transplantation. Patients with high minimal residual disease benefited from stem-cell transplantation, and targeted therapies might offer further improvements in outcomes for these patients. FUNDING: Bloodwise (Formerly Leukaemia and Lymphoma Research) UK, Cancer Research UK, Sporting Chance Cancer Foundation, National Health and Medical Research Council Australia, KindreneKankervrij Netherlands, European Union Seventh Framework Programme, India Alliance Wellcome DBT Margdarshi Fellowship.
    • Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival

      Li, C; Yan, JL; Torheim, Turid; McLean, MA; Boonzaier, NR; Zou, J; Huang, Y; Yuan, J; van Dijken, BRJ; Matys, T; et al. (2019)
      BACKGROUND AND PURPOSE: Glioblastoma exhibits profound intratumoral heterogeneity in perfusion. Particularly, low perfusion may induce treatment resistance. Thus, imaging approaches that define low perfusion compartments are crucial for clinical management. MATERIALS AND METHODS: A total of 112 newly diagnosed glioblastoma patients were prospectively recruited for maximal safe resection. The apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) were calculated from diffusion and perfusion imaging, respectively. Based on the overlapping regions of lowest rCBV quartile (rCBVL) with the lowest ADC quartile (ADCL) and highest ADC quartile (ADCH) in each tumor, two low perfusion compartments (ADCH-rCBVL and ADCL-rCBVL) were identified for volumetric analysis. Lactate and macromolecule/lipid levels were determined from multivoxel MR spectroscopic imaging. Progression-free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier's and multivariate Cox regression analyses, to evaluate the effects of compartment volume and lactate level on survival. RESULTS: Two compartments displayed higher lactate and macromolecule/lipid levels compared to contralateral normal-appearing white matter (each P?<?0.001). The proportion of the ADCL-rCBVL compartment in the contrast-enhancing tumor was associated with a larger infiltration on FLAIR (P?<?0.001, rho?=?0.42). The minimally invasive phenotype displayed a lower proportion of the ADCL-rCBVL compartment than the localized (P?=?0.031) and diffuse phenotypes (not significant). Multivariate Cox regression showed higher lactate level in the ADCL-rCBVL compartment was associated with worsened survival (PFS: HR 2.995, P?=?0.047; OS: HR 4.974, P?=?0.005). CONCLUSIONS: Our results suggest that the ADCL-rCBVL compartment may potentially indicate a clinically measurable resistant compartment.
    • Decoding the interdependence of multiparametric magnetic resonance imaging to reveal patient subgroups correlated with survivals

      Li, C; Wang, S; Liu, P; Torheim, Turid; Boonzaier, NR; van Dijken, BR; Schonlieb, CB; Markowetz, F; Price, SJ; Cambridge Brain Tumor Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (2019)
      Glioblastoma is highly heterogeneous in microstructure and vasculature, creating various tumor microenvironments among patients, which may lead to different phenotypes. The purpose was to interrogate the interdependence of microstructure and vasculature using perfusion and diffusion imaging and to investigate the utility of this approach in tumor invasiveness assessment. A total of 115 primary glioblastoma patients were prospectively recruited for preoperative magnetic resonance imaging (MRI) and surgery. Apparent diffusion coefficient (ADC) was calculated from diffusion imaging, and relative cerebral blood volume (rCBV) was calculated from perfusion imaging. The empirical copula transform was applied to ADC and rCBV voxels in the contrast-enhancing tumor region to obtain their joint distribution, which was discretized to extract second-order features for an unsupervised hierarchical clustering. The lactate levels of patient subgroups, measured by MR spectroscopy, were compared. Survivals were analyzed using Kaplan-Meier and multivariate Cox regression analyses. The results showed that three patient subgroups were identified by the unsupervised clustering. These subtypes showed no significant differences in clinical characteristics but were significantly different in lactate level and patient survivals. Specifically, the subtype demonstrating high interdependence of ADC and rCBV displayed a higher lactate level than the other two subtypes (P?=?.016 and P?=?.044, respectively). Both subtypes of low and high interdependence showed worse progression-free survival than the intermediate (P?=?.046 and P?=?.009 respectively). Our results suggest that the interdependence between perfusion and diffusion imaging may be useful in stratifying patients and evaluating tumor invasiveness, providing overall measure of tumor microenvironment using multiparametric MRI.
    • Clonal haematopoiesis - a source of biological noise in cell-free DNA analyses.

      Abbosh, Christopher; Swanton, Charles; Birkbak, NJ; Cancer Research UK Lung Cancer Centre of Excellence London and Manchester, University College London (2019)
    • Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia

      Paris, J; Morgan, M; Campos, J; Spencer, Gary J; Shmakova, A; Ivanova, I; Mapperley, C; Lawson, H; Wotherspoon, DA; Sepulveda, C; et al. (2019)
      Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation, generating self-renewing leukemic stem cells (LSCs). Here, we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function, including the tumor necrosis factor receptor Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly, YTHDF2 is not essential for normal HSC function, with YTHDF2 deficiency actually enhancing HSC activity. Thus, we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.
    • Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data

      Rudin, CM; Poirier, JT; Byers, LA; Dive, Caroline; Dowlati, A; George, J; Heymach, JV; Johnson, JE; Lehman, JM; MacPherson, D; et al. (2019)
      Small cell lung cancer (SCLC) is an exceptionally lethal malignancy for which more effective therapies are urgently needed. Several lines of evidence, from SCLC primary human tumours, patient-derived xenografts, cancer cell lines and genetically engineered mouse models, appear to be converging on a new model of SCLC subtypes defined by differential expression of four key transcription regulators: achaete-scute homologue 1 (ASCL1; also known as ASH1), neurogenic differentiation factor 1 (NeuroD1), yes-associated protein 1 (YAP1) and POU class 2 homeobox 3 (POU2F3). In this Perspectives article, we review and synthesize these recent lines of evidence and propose a working nomenclature for SCLC subtypes defined by relative expression of these four factors. Defining the unique therapeutic vulnerabilities of these subtypes of SCLC should help to focus and accelerate therapeutic research, leading to rationally targeted approaches that may ultimately improve clinical outcomes for patients with this disease.
    • The impact of reducing alcohol consumption in Australia: an estimate of the proportion of potentially avoidable cancers 2013-2037

      Wilson, LF; Baade, PD; Green, Adele C; Jordan, SJ; Kendall, BJ; Neale, RE; Olsen, CM; Youlden, DR; Webb, PM; Whiteman, DC; et al. (2019)
      The International Agency for Research on Cancer first concluded that alcohol causes cancer in humans in 1988. The World Cancer Research Fund has declared that alcohol causes cancer of the oral cavity, pharynx, larynx, oesophagus (squamous cell carcinoma), female breast, colon, rectum, stomach and liver. It recommended that alcohol be avoided altogether to prevent cancer. We aimed to quantify the impact of reducing alcohol consumption on future cancer incidence in Australia. We used PREVENT 3.01 simulation modelling software to estimate the proportion of cancers that could potentially be prevented over a 25-year period under two hypothetical intervention scenarios and two latency periods (20 and 30?years). Under a scenario where alcohol consumption abruptly ceases, we estimated up to 4% of alcohol-related cancers could be avoided over a 25-year period (~49,500 cancers, depending on assumed latency). If the maximum consumption of all Australian adults was ?20?g/day (~two Australian standard drinks), up to 2% of alcohol-related cancers could be avoided (~29,600 cancers). The maximum proportions were higher for men (6% for no alcohol consumption; 5% for ?20?g/day) than women (3%; 1%). The proportion avoidable was highest for oesophageal squamous cell carcinoma (17% no alcohol consumption; 9% ?20?g/day), followed by cancers of the oral cavity (12%; 5%) and pharynx (11%; 5%). The cancer sites with the highest numbers of potentially avoidable cases were colon in men (11,500; 9,900) and breast in women (14,400; 4,100). Successful interventions to reduce alcohol intake could lead to significant reductions in cancer incidence.
    • In situ evidence of cellular senescence in thymic epithelial cells (TECs) during human thymic involution

      Barbouti, A; Evangelou, K; Pateras, IS; Papoudou-Bai, A; Patereli, A; Stefanaki, K; Rontogianni, D; Munoz-Espin, D; Kanavaros, P; Gorgoulis, Vassilis G; et al. (2019)
      The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment-it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 -one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers.
    • Stage at diagnosis for childhood solid cancers in Australia: a population-based study

      Youlden, DR; Frazier, AL; Gupta, S; Pritchard-Jones, K; Kirby, ML; Baade, PD; Green, Adele C; Valery, PC; Aitken, JF; Cancer Council Queensland, Brisbane, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia (2019)
      BACKGROUND: Stage of cancer at diagnosis is one of the strongest predictors of survival and is essential for population cancer surveillance, comparison of cancer outcomes and to guide national cancer control strategies. Our aim was to describe, for the first time, the distribution of cases by stage at diagnosis and differences in stage-specific survival on a population basis for a range of childhood solid cancers in Australia. METHODS: The study cohort was drawn from the population-based Australian Childhood Cancer Registry and comprised children (<15 years) diagnosed with one of 12 solid malignancies between 2006 and 2014. Stage at diagnosis was assigned according to the Toronto Paediatric Cancer Stage Guidelines. Observed (all cause) survival was calculated using the Kaplan-Meier method, with follow-up on mortality available to 31 December 2015. RESULTS: Almost three-quarters (1256 of 1760 cases, 71%) of children in the study had localised or regional disease at diagnosis, varying from 43% for neuroblastoma to 99% for retinoblastoma. Differences in 5-year observed survival by stage were greatest for osteosarcoma (localised 85% (95% CI?=?72%-93%) versus metastatic 37% (15%-59%)), neuroblastoma (localised 98% (91%-99%) versus metastatic 60% (52%-67%)), rhabdomyosarcoma (localised 85% (71%-93%) versus metastatic 53% (34%-69%)), and medulloblastoma (localised 69% (61%-75%) versus metastases to spine 42% (27%-57%)). CONCLUSION: The stage-specific information presented here provides a basis for comparison with other international population cancer registries. Understanding variations in survival by stage at diagnosis will help with the targeted formation of initiatives to improve outcomes for children with cancer.
    • DNA methylation of immune checkpoints in the peripheral blood of breast and colorectal cancer patients.

      Elashi, AA; Sasidharan, N; Taha, RZ; Shaath, H; Elkord, Eyad; Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar (2019)
      Aberrant expression of immune checkpoints (ICs) in cancer creates an immunosuppressive microenvironment, which supports immune evasion of tumor cells. We have recently reported that epigenetic modifications are critical for ICs expression in the tumor microenvironment (TME) of primary breast cancer (PBC) and colorectal cancer (CRC). Herein, we investigated transcriptomic expression of ICs (PD-1, CTLA-4, LAG-3, TIM-3, TIGIT) and PD-L1 in peripheral blood of PBC and CRC patients, compared to healthy donors (HD). We found that expressions of TIM-3, TIGIT, PD-L1 were significantly upregulated, while LAG-3 expression was downregulated in peripheral blood of PBC and CRC patients. Demethylation enzymes TET2 and TET3 were also upregulated. In addition, promoter DNA methylation status of PD-1 was significantly hypermethylated, while PD-L1 was hypomethylated in PBC and CRC patients. Furthermore, TIGIT was significantly hypomethylated only in CRC patients. Remarkably, promoter methylation status of LAG-3, TIGIT and PD-L1 was in concordance with transcriptomic expression in CRC: the more the hypomethylation, the higher the expression. In comparison, we found that CTLA-4, TIM-3, TIGIT and PD-L1 in PBC, and CTLA-4 in CRC patients were significantly upregulated in peripheral blood, compared with tumor tissues of the same patients. However, demethylation status of all ICs was higher in TT, except for TIGIT in PBC, and CTLA-4 in CRC patients. These data indicate that the underlying mechanisms behind peripheral upregulation of PD-L1 and TIGIT in cancer patients could be due to aberrant promoter methylation profile. Moreover, demethylation inhibitors together with anti-PD-L1/anti-TIGIT could be a more efficient therapeutic strategy in cancer patients.
    • Characterisation of an isogenic model of cisplatin resistance in oesophageal adenocarcinoma cells

      Buckley, AM; Bibby, Becky A; Dunne, MR; Kennedy, SA; Davern, MB; Kennedy, BN; Maher, SG; O'Sullivan, J; Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland. (2019)
      Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies; however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O?, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC.
    • Stage at diagnosis for children with blood cancers in Australia: application of the Toronto Paediatric Cancer Stage Guidelines in a population-based national childhood cancer registry

      Youlden, DR; Gupta, S; Frazier, AL; Moore, AS; Baade, PD; Valery, PC; Green, Adele C; Aitken, JF; Cancer Council Queensland, Brisbane, Queensland, Australia (2019)
      BACKGROUND: Information on stage at diagnosis for childhood blood cancers is essential for surveillance but is not available on a population basis in most countries. Our aim was to apply the internationally endorsed Toronto Paediatric Cancer Stage Guidelines to children (<15 years) with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), or non-Hodgkin lymphoma (NHL) and to assess differences in survival by stage at diagnosis. PROCEDURE: Stage was defined by extent of involvement of the central nervous system (CNS) for ALL and AML and using the Ann Arbor and St Jude-Murphy systems for HL and NHL, respectively. The study cohort was drawn from the population-based Australian Childhood Cancer Registry, consisting of children diagnosed with one of these four blood cancers between 2006 and 2014 with follow-up to 2015. Five-year observed survival was estimated from the Kaplan-Meier method. RESULTS: Stage was assigned to 2201 of 2351 eligible patients (94%), ranging from 85% for AML to 95% for ALL, HL, and NHL. Survival following ALL varied from 94% (95% CI = 93%-95%) for CNS1 disease to 89% (95% CI = 79%-94%) for CNS2 (P = 0.07), whereas for AML there was essentially no difference in survival between CNS- (77%) and CNS+ disease (78%; P = 0.94). Nearly all children with HL survived for five years. There was a trend (P = 0.04) toward worsening survival with higher stage for NHL. CONCLUSIONS: These results provide the first population-wide picture of the distribution and outcomes for childhood blood cancers in Australia by extent of disease at diagnosis and provide a baseline for future comparisons.
    • The influence of BRCA2 mutation on localized prostate cancer

      Taylor, RA; Fraser, M; Rebello, R; Boutros, PC; Murphy, DG; Bristow, Robert G; Risbridger, GP; Monash Partners Comprehensive Cancer Consortium and Cancer Program, Biomedicine Discovery Institute, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology and Department of Physiology, Monash University, Melbourne, Victoria, Australia (2019)
      A key challenge in the management of localized prostate cancer is the identification of men with a high likelihood of progression to an advanced, incurable stage. Patients who harbour germline BRCA2 mutations have worse clinical outcomes than noncarriers when treated with surgery or radiotherapy. Insights from different disciplines have improved our understanding of why patients with BRCA2-mutant tumours have a high likelihood of failing on conventional management after diagnosis. Treatment-naive BRCA2-mutant tumours are defined by aggressive clinical and molecular features early in the disease course, and the genomic landscape of these BRCA2-mutant tumours is characterized by a unique molecular profile and higher genomic instability than noncarrier tumours. Moreover, BRCA2-mutant tumours commonly show the concurrent presence of the intraductal carcinoma of the prostate (IDCP) pathology, a poor prognostic indicator. Subclonal analyses have revealed that IDCP and invasive adenocarcinoma in BRCA2-mutant tumours can arise from the same ancestral clone, implying that a temporal evolutionary trajectory exists. Finally, functional studies have shown that BRCA2-mutant tumours can harbour a subpopulation of cancer cells that can tolerate castration de novo, enabling the tumour to evade androgen deprivation therapy. Importantly, future challenges remain regarding how to best model the biology underpinning this aggressive phenotype and translate these findings to improve clinical outcomes.
    • Inter-rater agreement in glioma segmentations on longitudinal MRI

      Visser, M; Muller, DMJ; van Duijn, RJM; Smits, M; Verburg, N; Hendriks, EJ; Nabuurs, RJA; Bot, JCJ; Eijgelaar, RS; Witte, M; et al. (2019)
      BACKGROUND: Tumor segmentation of glioma on MRI is a technique to monitor, quantify and report disease progression. Manual MRI segmentation is the gold standard but very labor intensive. At present the quality of this gold standard is not known for different stages of the disease, and prior work has mainly focused on treatment-naive glioblastoma. In this paper we studied the inter-rater agreement of manual MRI segmentation of glioblastoma and WHO grade II-III glioma for novices and experts at three stages of disease. We also studied the impact of inter-observer variation on extent of resection and growth rate. METHODS: In 20 patients with WHO grade IV glioblastoma and 20 patients with WHO grade II-III glioma (defined as non-glioblastoma) both the enhancing and non-enhancing tumor elements were segmented on MRI, using specialized software, by four novices and four experts before surgery, after surgery and at time of tumor progression. We used the generalized conformity index (GCI) and the intra-class correlation coefficient (ICC) of tumor volume as main outcome measures for inter-rater agreement. RESULTS: For glioblastoma, segmentations by experts and novices were comparable. The inter-rater agreement of enhancing tumor elements was excellent before surgery (GCI 0.79, ICC 0.99) poor after surgery (GCI 0.32, ICC 0.92), and good at progression (GCI 0.65, ICC 0.91). For non-glioblastoma, the inter-rater agreement was generally higher between experts than between novices. The inter-rater agreement was excellent between experts before surgery (GCI 0.77, ICC 0.92), was reasonable after surgery (GCI 0.48, ICC 0.84), and good at progression (GCI 0.60, ICC 0.80). The inter-rater agreement was good between novices before surgery (GCI 0.66, ICC 0.73), was poor after surgery (GCI 0.33, ICC 0.55), and poor at progression (GCI 0.36, ICC 0.73). Further analysis showed that the lower inter-rater agreement of segmentation on postoperative MRI could only partly be explained by the smaller volumes and fragmentation of residual tumor. The median interquartile range of extent of resection between raters was 8.3% and of growth rate was 0.22?mm/year. CONCLUSION: Manual tumor segmentations on MRI have reasonable agreement for use in spatial and volumetric analysis. Agreement in spatial overlap is of concern with segmentation after surgery for glioblastoma and with segmentation of non-glioblastoma by non-experts.
    • Import of extracellular ATP in yeast and man modulates AMPK and TORC1 signalling

      Forte, GM; Davie, E; Lie, S; Franz-Wachtel, M; Ovens, AJ; Wang, T; Oakhill, JS; Macek, B; Hagan, Iain M; Petersen, J; et al. (2019)
      AMP-activated kinase (AMPK) and Target Of Rapamycin (TOR) signalling coordinate cell growth, proliferation, metabolism, and cell survival with the nutrient environment of cells. The poor vasculature and nutritional stress experienced by cells in solid tumours raises the question: how do they assimilate sufficient nutrients to survive? Here, we show that human and fission yeast cells import ATP and AMP from their external environment to regulate AMPK and TOR signalling. Exposure of fission yeast and human cells to external AMP impeded cell growth, however, in yeast this restraining impact required AMPK. In contrast, external ATP rescued the growth defect of yeast mutants with reduced TORC1 signalling, furthermore, exogenous ATP transiently enhanced TORC1 signalling in both yeast and human cell lines. Addition of the PANX1 channel inhibitor probenecid blocked ATP import into human cell lines suggesting that this channel may be responsible for both ATP release and uptake in mammals. In light of these findings it is possible that the higher extracellular ATP concentration reported in solid tumours is both scavenged and recognized as an additional energy source beneficial for cells growth.
    • The diverse consequences of FOXC1 deregulation in cancer

      Gilding, LN; Somervaille, Tim CP; Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK. (2019)
      Forkhead box C1 (FOXC1) is a transcription factor with essential roles in mesenchymal lineage specification and organ development during normal embryogenesis. In keeping with these developmental properties, mutations that impair the activity of FOXC1 result in the heritable Axenfeld-Rieger Syndrome and other congenital disorders. Crucially, gain of FOXC1 function is emerging as a recurrent feature of malignancy; FOXC1 overexpression is now documented in more than 16 cancer types, often in association with an unfavorable prognosis. This review explores current evidence for FOXC1 deregulation in cancer and the putative mechanisms by which FOXC1 confers its oncogenic effects.
    • PD-L1 Expression in human breast cancer stem cells Is epigenetically regulated through posttranslational histone modifications

      Darvin, P; Sasidharan, N; Elkord, Eyad; Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar (2019)
      Tumor progression through immune evasion is a major challenge in cancer therapy. Recent studies revealed that enhanced PD-L1 expression in cancer stem cells is linked to immune evasion. Understanding the mechanisms behind this PD-L1 overexpression in cancer stem cells is critical for developing more effective strategies for preventing immune evasion and increasing the efficacy of anti-PD-1/PD-L1 therapy. Tumorsphere formation in breast cancer cells enhanced epithelial to mesenchymal transition (EMT), which is evident by increased expression of mesenchymal markers. In this study, we analyzed CpG methylation of PD-L1 promoter in MCF-7 and BT-549 breast cancer cells and tumorspheres derived from them. PD-L1 promoter was significantly hypomethylated in MCF-7 tumorspheres, but not from BT-549 tumorspheres, compared with their cell line counterparts. The active demethylation of PD-L1 promoter was confirmed by the increase in the distribution of 5hmC and decrease in 5mC levels and the upregulation of TET3 and downregulation of DNMTs enzymes in MCF-7 tumorspheres, compared with the cell line. Additionally, we checked the distribution of repressive histones H3K9me3, H3K27me3, and active histone H3K4me3 in the PD-L1 promoter. We found that distribution of repressive histones to the PD-L1 promoter was lower in tumorspheres, compared with cell lines. Moreover, an overexpression of histone acetylation enzymes was observed in tumorspheres suggesting the active involvement of histone modifications in EMT-induced PD-L1 expression. In summary, EMT-associated overexpression of PD-L1 was partially independent of promoter CpG methylation and more likely to be dependent on posttranslational histone modifications.
    • Biological relevance of cell-in-cell in cancers

      Mackay, HL; Muller, Patricia; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K (2019)
      Cell-in-cell (CIC) is a term used to describe the presence of one, usually living, cell inside another cell that is typically considered non-phagocytic. Examples of this include tumour cells inside tumour cells (homotypic), mesenchymal stem cells inside tumour cells (heterotypic) or immune cells inside tumour cells (heterotypic). CIC formation can occur in cell lines and in tissues and it has been most frequently observed during inflammation and in cancers. Over the past 10 years, many researchers have studied CIC structures and a few different models have been proposed through which they can be formed, including entosis, cannibalism and emperipolesis among others. Recently, our laboratory discovered a role for mutant p53 in facilitating the formation of CIC and promoting genomic instability. These data and research by many others have uncovered a variety of molecules involved in CIC formation and have started to give us an idea of why they are formed and how they could contribute to oncogenic processes. In this perspective, we summarise current literature and speculate on the role of CIC in cancer biology.
    • Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways.

      Duffy, DL; Zhu, G; Li, X; Sanna, M; Iles, MM; Jacobs, LC; Evans, DM; Yazar, S; Beesley, J; Law, MH; et al. (2019)
      The total number of acquired melanocytic nevi on the skin is strongly correlated with melanoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands, UK, and USA comprising 52,506 individuals. We confirm known loci including MTAP, PLA2G6, and IRF4, and detect novel SNPs in KITLG and a region of 9q32. In a bivariate analysis combining the nevus results with a recent melanoma GWAS meta-analysis (12,874 cases, 23,203 controls), SNPs near GPRC5A, CYP1B1, PPARGC1B, HDAC4, FAM208B, DOCK8, and SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a suggestive level. Overall, we conclude that most nevus genes affect melanoma risk (KITLG an exception), while many melanoma risk loci do not alter nevus count. For example, variants in TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis.
    • Clinicopathological factors associated with death from thin (<= 1 mm) melanoma

      Claeson, M; Baade, P; Brown, S; Soyer, P; Smithers, M; Green, Adele C; Whiteman, D; Khosrotehrani, K; Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia (2019)