• In vivo binding of recombination proteins to non-DSB DNA lesions and to replication forks

      González-Prieto, R.; Cabello-Lobato, Maria J; Prado, F.; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands. (2021)
      Homologous recombination (HR) has been extensively studied in response to DNA double-strand breaks (DSBs). In contrast, much less is known about how HR deals with DNA lesions other than DSBs (e.g., at single-stranded DNA) and replication forks, despite the fact that these DNA structures are associated with most spontaneous recombination events. A major handicap for studying the role of HR at non-DSB DNA lesions and replication forks is the difficulty of discriminating whether a recombination protein is associated with the non-DSB lesion per se or rather with a DSB generated during their processing. Here, we describe a method to follow the in vivo binding of recombination proteins to non-DSB DNA lesions and replication forks. This approach is based on the cleavage and subsequent electrophoretic analysis of the target DNA by the recombination protein fused to the micrococcal nuclease.
    • CKAP2L promotes non-small cell lung cancer progression through regulation of transcription elongation

      Monteverde, Tiziana; Sahoo, Sudhakar; La Montagna, Manuela; Magee, Peter; Shi, Lei; Lee, David; Sellers, Robert; Baker, Alexander R; Leong, Hui Sun; Fassan, M.; et al. (2021)
      Chromosomal instability (CIN) is a driver of clonal diversification and intra-tumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that ∼80% of solid cancers, including non-small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC.
    • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction

      Conti, D. V.; Darst, B. F.; Moss, L. C.; Saunders, E. J.; Sheng, X.; Chou, A.; Schumacher, F. R.; Olama, A. A. A.; Benlloch, S.; Dadaev, T.; et al. (2021)
      Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
    • A practical guide to cancer subclonal reconstruction from DNA sequencing

      Tarabichi, M.; Salcedo, A.; Deshwar, A. G.; Ni Leathlobhair, M.; Wintersinger, J.; Wedge, David C; Van Loo, P.; Morris, Q. D.; Boutros, P. C.; The Francis Crick Institute, London, UK. (2021)
      Subclonal reconstruction from bulk tumor DNA sequencing has become a pillar of cancer evolution studies, providing insight into the clonality and relative ordering of mutations and mutational processes. We provide an outline of the complex computational approaches used for subclonal reconstruction from single and multiple tumor samples. We identify the underlying assumptions and uncertainties in each step and suggest best practices for analysis and quality assessment. This guide provides a pragmatic resource for the growing user community of subclonal reconstruction methods.
    • CRISPR-Cas9-mediated gene silencing in cultured human epithelia

      Gago, S.; Overton, Nicola L D; Bowyer, P.; Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Core Technology Facility, The University of Manchester, Manchester, UK. (2021)
      CRISPR/Cas9 technology enables rapid and efficient genome editing in a variety of experimental systems. Genome editing using CRISPR/Cas9 has become an increasingly popular genetic engineering tool due to (1) an extensive array of commercial ready-to-use CRIPSR/Cas9 systems, (2) improved efficiency of cell delivery, and (3) the possibility to do multigene editing. Here, we describe a method to introduce single gene disruption in lung bronchial epithelial cells. This approach can be used to study host factors important for pathogen interaction or to identify and study genetic markers determining susceptibility to fungal disease.
    • A RAC-GEF network critical for early intestinal tumourigenesis

      Pickering, K. A.; Gilroy, K.; Cassidy, J. W.; Fey, S. K.; Najumudeen, A. K.; Zeiger, L. B.; Vincent, D. F.; Gay, D. M.; Johansson, J.; Fordham, R. P.; et al. (2021)
      RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.
    • Prostate cancer

      Rebello, Richard J; Oing, Christoph; Knudsen, K. E.; Loeb, S.; Johnson, D. C.; Reiter, R. E.; Gillessen, S.; Van der Kwast, T.; Bristow, Robert G; Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Mancheste (2021)
      Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
    • Burkitt Lymphoma International Prognostic Index

      Olszewski, A. J.; Jakobsen, L. H.; Collins, G. P.; Cwynarski, K.; Bachanova, V.; Blum, K. A.; Boughan, K. M.; Bower, M.; Dalla Pria, A.; Danilov, A.; et al. (2021)
      Purpose: Burkitt lymphoma (BL) has unique biology and clinical course but lacks a standardized prognostic model. We developed and validated a novel prognostic index specific for BL to aid risk stratification, interpretation of clinical trials, and targeted development of novel treatment approaches. Methods: We derived the BL International Prognostic Index (BL-IPI) from a real-world data set of adult patients with BL treated with immunochemotherapy in the United States between 2009 and 2018, identifying candidate variables that showed the strongest prognostic association with progression-free survival (PFS). The index was validated in an external data set of patients treated in Europe, Canada, and Australia between 2004 and 2019. Results: In the derivation cohort of 633 patients with BL, age ≥ 40 years, performance status ≥ 2, serum lactate dehydrogenase > 3× upper limit of normal, and CNS involvement were selected as equally weighted factors with an independent prognostic value. The resulting BL-IPI identified groups with low (zero risk factors, 18% of patients), intermediate (one factor, 36% of patients), and high risk (≥ 2 factors, 46% of patients) with 3-year PFS estimates of 92%, 72%, and 53%, respectively, and 3-year overall survival estimates of 96%, 76%, and 59%, respectively. The index discriminated outcomes regardless of HIV status, stage, or first-line chemotherapy regimen. Patient characteristics, relative size of the BL-IPI groupings, and outcome discrimination were consistent in the validation cohort of 457 patients, with 3-year PFS estimates of 96%, 82%, and 63% for low-, intermediate-, and high-risk BL-IPI, respectively. Conclusion: The BL-IPI provides robust discrimination of survival in adult BL, suitable for use as prognostication and stratification in trials. The high-risk group has suboptimal outcomes with standard therapy and should be considered for innovative treatment approaches.
    • Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories

      Hynds, R. E.; Frese, Kristopher K; Pearce, D. R.; Grönroos, E.; Dive, Caroline; Swanton, C.; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK. (2021)
      Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although advances are being made towards earlier detection and the development of impactful targeted therapies and immunotherapies, the 5-year survival of patients with advanced disease is still below 20%. Effective cancer research relies on pre-clinical model systems that accurately reflect the evolutionary course of disease progression and mimic patient responses to therapy. Here, we review pre-clinical models, including genetically engineered mouse models and patient-derived materials, such as cell lines, primary cell cultures, explant cultures and xenografts, that are currently being used to interrogate NSCLC evolution from pre-invasive disease through locally invasive cancer to the metastatic colonization of distant organ sites.
    • Incorporating radiomics into clinical trials: expert consensus on considerations for data-driven compared to biologically driven quantitative biomarkers

      Fournier, L.; Costaridou, L.; Bidaut, L.; Michoux, N.; Lecouvet, F. E.; de Geus-Oei, L. F.; Boellaard, R.; Oprea-Lager, D. E.; Obuchowski, N. A.; Caroli, A.; et al. (2021)
      Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.
    • Non-canonical functions of the ARF tumor suppressor in development and tumorigenesis

      Lagopati, N.; Belogiannis, K.; Angelopoulou, A.; Papaspyropoulos, A.; Gorgoulis, Vassilis G; Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens (NKUA), 115 27 Athens, Greece. (2021)
      P14ARF (ARF; Alternative Reading Frame) is an extensively characterized tumor suppressor which, in response to oncogenic stimuli, mediates cell cycle arrest and apoptosis via p53-dependent and independent routes. ARF has been shown to be frequently lost through CpG island promoter methylation in a wide spectrum of human malignancies, such as colorectal, prostate, breast, and gastric cancers, while point mutations and deletions in the p14ARF locus have been linked with various forms of melanomas and glioblastomas. Although ARF has been mostly studied in the context of tumorigenesis, it has been also implicated in purely developmental processes, such as spermatogenesis, and mammary gland and ocular development, while it has been additionally involved in the regulation of angiogenesis. Moreover, ARF has been found to hold important roles in stem cell self-renewal and differentiation. As is often the case with tumor suppressors, ARF functions as a pleiotropic protein regulating a number of different mechanisms at the crossroad of development and tumorigenesis. Here, we provide an overview of the non-canonical functions of ARF in cancer and developmental biology, by dissecting the crosstalk of ARF signaling with key oncogenic and developmental pathways.
    • Antitumor effects of self-assembling peptide-emodin in situ hydrogels in vitro and in vivo

      Wei, W.; Tang, Jianhua; Li, H.; Huang, Y.; Yin, C.; Li, D.; Tang, F.; Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, People's Republic of China. (2021)
      Purpose: To study the in vitro and in vivo antitumor effects of the colloidal suspension-in situ hydrogel of emodin (EM) constructed with the self-assembling peptide RADA16-I and systematically evaluate the feasibility of the delivery system. Methods: The MTT and colony-formation assays were used to determine the viability of normal cells NCTC 1469 and tumor cells Hepa1-6. The uptake of EM in the RADA16-I-EM in situ hydrogel by tumor cells was analyzed by laser confocal microscope and flow cytometry. Flow cytometry was used to detect the cell apoptosis and cell cycle distribution. Transwell assay was used to detect the migration and invasion of tumor cells. The antitumor efficacy of the RADA16-I-EM in situ hydrogel and its toxic effects was further assessed in vivo on Hepa1-6 tumor-bearing C57 mice. Results: The results showed that the RADA16-I-EM in situ hydrogels could obviously reduce the toxicity of EM to normal cells and the survival of tumor cells. The uptake of EM by the cells from the hydrogels was obviously increased and could significantly induce apoptosis and arrest cell cycle in the G2/M phase, and reduce the migration, invasion and clone-formation ability of the cells. The RADA16-I-EM in situ hydrogel could also effectively inhibit the tumor growth and obviously decrease the toxic effects of EM on normal tissues in vivo. Conclusion: Our results demonstrated that RADA16-I has the potential to be a carrier for the hydrophobic drug EM and can effectively improve the delivery of hydrophobic antitumor drugs with enhanced antitumor effects and reduced toxic effects of the drugs on normal cells and tissues.
    • Glucose 6-phosphate dehydrogenase from trypanosomes: selectivity for steroids and chemical validation in bloodstream trypanosoma brucei

      Ortíz, C.; Moraca, F.; Laverriere, M.; Jordan, Allan M; Hamilton, Niall M; Comini, M. A.; Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay. (2021)
      Glucose 6-phosphate dehydrogenase (G6PDH) fulfills an essential role in cell physiology by catalyzing the production of NADPH+ and of a precursor for the de novo synthesis of ribose 5-phosphate. In trypanosomatids, G6PDH is essential for in vitro proliferation, antioxidant defense and, thereby, drug resistance mechanisms. So far, 16α-brominated epiandrosterone represents the most potent hit targeting trypanosomal G6PDH. Here, we extended the investigations on this important drug target and its inhibition by using a small subset of androstane derivatives. In Trypanosoma cruzi, immunofluorescence revealed a cytoplasmic distribution of G6PDH and the absence of signal in major organelles. Cytochemical assays confirmed parasitic G6PDH as the molecular target of epiandrosterone. Structure-activity analysis for a set of new (dehydro)epiandrosterone derivatives revealed that bromination at position 16α of the cyclopentane moiety yielded more potent T. cruzi G6PDH inhibitors than the corresponding β-substituted analogues. For the 16α brominated compounds, the inclusion of an acetoxy group at position 3 either proved detrimental or enhanced the activity of the epiandrosterone or the dehydroepiandrosterone derivatives, respectively. Most derivatives presented single digit μM EC50 against infective T. brucei and the killing mechanism involved an early thiol-redox unbalance. This data suggests that infective African trypanosomes lack efficient NADPH+-synthesizing pathways, beyond the Pentose Phosphate, to maintain thiol-redox homeostasis.
    • Distribution and clinical role of KIT gene mutations in melanoma according to subtype: a study of 492 Spanish patients

      Millán-Esteban, D.; García-Casado, Z.; Manrique-Silva, E.; Virós, Amaya; Kumar, R.; Furney, S.; López-Guerrero, J. A.; Requena, C.; Bañuls, J.; Traves, V.; et al. (2021)
      Background: KIT mutations are primarily associated with acral and mucosal melanoma, and have been reported to show higher prevalence in chronic sun-damaged (CSD) than non-CSD melanomas. Objectives: To investigate the prevalence of KIT mutations in melanoma according to subtype, and determine the clinical role of such mutations. Material & methods: We present results from a study of a Spanish population of 492 melanomas, classified according to the latest World Health Organization (WHO) guidelines. We analysed the mutational status of KIT and correlated with different clinical variables related to sun exposure and family history. Results: KIT mutations were significantly more frequent in acral (3/36; 8.3%) and mucosal (4/8; 50%) melanomas than non-acral cutaneous melanomas. No significant difference was observed in KIT mutational status between CSD and non-CSD melanomas. Conclusion: Our results suggest that KIT mutations in melanoma tumours are unrelated to the development of nevi or chronic sun damage, but their presence is associated with aggressive melanomas which show ulceration, vascular invasiveness, and increased Breslow thickness. These findings are consistent with those reported by The Cancer Genome Atlas network.
    • Melanoma models for the next generation of therapies

      Patton, E. E.; Mueller, K. L.; Adams, D. J.; Anandasabapathy, N.; Aplin, A. E.; Bertolotto, C.; Bosenberg, M.; Ceol, C. J.; Chi, P.; Herlyn, M.; et al. (2021)
      There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.
    • DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy

      Pillay, Nisha; Brady, Rosie M; Dey, Malini; Morgan, Robert David; Taylor, Stephen S; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK (2021)
      Poly (ADP-ribosyl)ation has central functions in maintaining genome stability, including facilitating DNA replication and repair. In cancer cells these processes are frequently disrupted, and thus interfering with poly (ADP-ribosyl)ation can exacerbate inherent genome instability and induce selective cytotoxicity. Indeed, inhibitors of poly (ADP-ribose) polymerase (PARP) are having a major clinical impact in treating women with BRCA-mutant ovarian cancer, based on a defect in homologous recombination. However, only around half of ovarian cancers harbour defects in homologous recombination, and most sensitive tumours eventually acquire PARP inhibitor resistance with treatment. Thus, there is a pressing need to develop alternative treatment strategies to target tumours with both inherent and acquired resistance to PARP inhibition. Several novel inhibitors of poly (ADP-ribose)glycohydrolase (PARG) have been described, with promising anti-cancer activity in vitro that is distinct from PARP inhibitors. Here we discuss, the role of poly (ADP-ribosyl)ation in genome stability, and the potential for PARG inhibitors as a complementary strategy to PARP inhibitors in the treatment of ovarian cancer.
    • High-throughput microbore ultrahigh-performance liquid chromatography-ion mobility-enabled-mass spectrometry-based proteomics methodology for the exploratory analysis of serum samples from large cohort studies

      Lennon, S.; Hughes, C. J.; Muazzam, Ammara; Townsend, Paul A; Gethings, L. A.; Wilson, I. D.; Plumb, R. S.; Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K. (2021)
      The deployment of proteomic analysis in clinical studies represents a significant opportunity to detect and validate biomarkers in translational medicine, improve disease understanding, and provide baseline information on population health. However, comprehensive proteome studies usually employ nanoscale chromatography and often require several hours of analysis/sample. Here, we describe a high-throughput liquid chromatography tandem mass spectrometry (LC/MS/MS) methodology using 1 mm scale chromatography requiring only 15 min/sample, coupled to ion mobility-enabled mass spectrometry. The short run time effected a 6-fold increase in productivity compared with nanoscale LC/MS. The method demonstrated excellent reproducibility with retention time coefficient of variations of less than 0.05% and peak area reproducibility ranging from 5 to 15%. The 1 mm system produced similar chromatographic peak capacity values to the nanoscale miniaturized system, detecting 90% of the Escherichia coli proteins identified by the 75 μm LC/MS system (albeit based on only 75% of the peptides found by the latter). Application to the analysis of serum samples from a human prostate cancer study group resulted in the identification of a total of 533 proteins revealing the differential expression of proteins linked to patients receiving hormone-radiotherapy or undergoing surgery.
    • Terahertz reading of ferroelectric domain wall dielectric switching

      Zhang, M.; Chen, Z.; Yue, Y.; Chen, T.; Yan, Z.; Jiang, Q.; Yang, B.; Eriksson, M.; Tang, Jianhua; Zhang, D.; et al. (2021)
      Ferroelectric domain walls (DWs) are important nanoscale interfaces between two domains. It is widely accepted that ferroelectric domain walls work idly at terahertz (THz) frequencies, consequently discouraging efforts to engineer the domain walls to create new applications that utilize THz radiation. However, the present work clearly demonstrates the activity of domain walls at THz frequencies in a lead-free Aurivillius phase ferroelectric ceramic, Ca0.99Rb0.005Ce0.005Bi2Nb2O9, examined using THz-time-domain spectroscopy (THz-TDS). The dynamics of domain walls are different at kHz and THz frequencies. At low frequencies, domain walls work as a group to increase dielectric permittivity. At THz frequencies, the defective nature of domain walls serves to lower the overall dielectric permittivity. This is evidenced by higher dielectric permittivity in the THz band after poling, reflecting decreased domain wall density. An elastic vibrational model has also been used to verify that a single frustrated dipole in a domain wall represents a weaker contribution to the permittivity than its counterpart within a domain. The work represents a fundamental breakthrough in understanding the dielectric contributions of domain walls at THz frequencies. It also demonstrates that THz probing can be used to read domain wall dielectric switching.
    • Mitochondrial inhibitor atovaquone increases tumor oxygenation and inhibits hypoxic gene expression in patients with non-small cell lung cancer

      Skwarski, M.; McGowan, D. R.; Belcher, E.; Di Chiara, F.; Stavroulias, D.; McCole, M. G.; Derham, J.; Chu, K. Y.; Teoh, E.; Chauhan, J.; et al. (2021)
      Purpose: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). Patients and methods: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was perf0rmed. Results: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. Conclusions: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.
    • Effect- of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse b-cell acute lymphoblastic leukemia: a randomized clinical trial

      Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J. D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. (2021)
      Importance: Blinatumomab is a CD3/CD19-directed bispecific T-cell engager molecule with efficacy in children with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). Objective: To evaluate event-free survival in children with high-risk first-relapse B-ALL after a third consolidation course with blinatumomab vs consolidation chemotherapy before allogeneic hematopoietic stem cell transplant. Design, setting, and participants: In this randomized phase 3 clinical trial, patients were enrolled November 2015 to July 2019 (data cutoff, July 17, 2019). Investigators at 47 centers in 13 countries enrolled children older than 28 days and younger than 18 years with high-risk first-relapse B-ALL in morphologic complete remission (M1 marrow, <5% blasts) or with M2 marrow (blasts ≥5% and <25%) at randomization. Intervention: Patients were randomized to receive 1 cycle of blinatumomab (n = 54; 15 μg/m2/d for 4 weeks, continuous intravenous infusion) or chemotherapy (n = 54) for the third consolidation. Main outcomes and measures: The primary end point was event-free survival (events: relapse, death, second malignancy, or failure to achieve complete remission). The key secondary efficacy end point was overall survival. Other secondary end points included minimal residual disease remission and incidence of adverse events. Results: A total of 108 patients were randomized (median age, 5.0 years [interquartile range {IQR}, 4.0-10.5]; 51.9% girls; 97.2% M1 marrow) and all patients were included in the analysis. Enrollment was terminated early for benefit of blinatumomab in accordance with a prespecified stopping rule. After a median of 22.4 months of follow-up (IQR, 8.1-34.2), the incidence of events in the blinatumomab vs consolidation chemotherapy groups was 31% vs 57% (log-rank P < .001; hazard ratio [HR], 0.33 [95% CI, 0.18-0.61]). Deaths occurred in 8 patients (14.8%) in the blinatumomab group and 16 (29.6%) in the consolidation chemotherapy group. The overall survival HR was 0.43 (95% CI, 0.18-1.01). Minimal residual disease remission was observed in more patients in the blinatumomab vs consolidation chemotherapy group (90% [44/49] vs 54% [26/48]; difference, 35.6% [95% CI, 15.6%-52.5%]). No fatal adverse events were reported. In the blinatumomab vs consolidation chemotherapy group, the incidence of serious adverse events was 24.1% vs 43.1%, respectively, and the incidence of adverse events greater than or equal to grade 3 was 57.4% vs 82.4%. Adverse events leading to treatment discontinuation were reported in 2 patients in the blinatumomab group. Conclusions and relevance: Among children with high-risk first-relapse B-ALL, treatment with 1 cycle of blinatumomab compared with standard intensive multidrug chemotherapy before allogeneic hematopoietic stem cell transplant resulted in an improved event-free survival at a median of 22.4 months of follow-up.