• Publisher correction: ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma

      Trucco, Lucas D; Mundra, Piyushkumar A; Hogan, Kate; Garcia-Martinez, Pablo; Viros, Amaya; Mandal, Amit Kumar; Macagno, N; Gaudy-Marqueste, C; Allan, D; Baenke, Franziska; et al. (2018)
      In the version of this article originally published, Extended Data Fig. 3 was incorrect. A duplicate of Extended Data Fig. 4 was uploaded in place of Extended Data Fig. 3. Extended Data Fig. 3 has now been uploaded. The error has been fixed in the PDF and HTML versions of this article.
    • Ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma.

      Trucco, Lucas D; Mundra, Piyushkumar A; Hogan, Kate; Garcia-Martinez, Pablo; Viros, Amaya; Mandal, Amit Kumar; Macagno, N; Gaudy-Marqueste, C; Allan, D; Baenke, Franziska; et al. (2018)
      Erratum in Publisher Correction: Ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma. [Nat Med. 2018] Abstract The melanoma genome is dominated by ultraviolet radiation (UVR)-induced mutations. Their relevance in disease progression is unknown. Here we classify melanomas by mutation signatures and identify ten recurrently mutated UVR signature genes that predict patient survival. We validate these findings in primary human melanomas; in mice we show that this signature is imprinted by short-wavelength UVR and that four exposures to UVR are sufficient to accelerate melanomagenesis.