• Monitoring circulating tumor cell (CTC) and circulating tumor DNA (ctDNA) genomic alterations in ER positive (POS)/HER2 negative (NEG) advanced breast cancer during endocrine therapy: correlative study of AZD9496 oral SERD phase I trial

      Cani, A. K.; Dolce, E. M.; Darga, E. P.; Hu, K.; Brown, M.; Liu, C. J.; Pierce, Jackie; Bradbury, Kieran; Aung, K.; Schiavon, G.; et al. (2021)
      Purpose: The vast majority of advanced ER POS breast cancers eventually cease responding to endocrine (ET) and other therapies leading to evolution of lethal disease. However, timely monitoring of the molecular events associated with response/progression in tissue biopsies is logistically difficult. The use of liquid biopsies, such as CTC and ctDNA, in this context has been of recent interest. Patients and Methods: Individual CTC and ctDNA were obtained at different time points from patients with advanced ER POS/HER2 NEG breast cancer enrolled in a Phase I trial of AZD9496, an oral selective estrogen receptor degrader (SERD) ET. The CTC, purified using tandem CellSearch®/DepArray™ technologies, were genomically profiled by DNA single cell next generation sequencing (scNGS). Plasma ctDNA was isolated from blood collected in Streck BCT tubes. Genomic profiling was performed by targeted gene panel scNGS for CTC and ddPCR for ERα gene (ESR1) mutations in ctDNA. Results: 123 high-quality CTCs from 12 patients profiled by scNGS showed 100% concordance with ctDNA in detection of driver ESR1 somatic mutations. CTC scNGS additionally revealed extensive intra-patient heterogeneity of driver alterations, that would have been unresolvable by bulk ctDNA profiling, including separate subclonal CTC populations emerging within the same patient. ScNGS revealed potential opportunities for targeted therapies in 73% of patients, directed at alterations in PIK3CA, FGFR2, KIT and BRAF, at times present as 2 or more targets in the same or different cell populations. In one patient, an emergent, distinct, BRAF p.V600E targetable alteration was detected in a subpopulation of CTCs collected at the progression time point but not at baseline. Conclusion: Serial monitoring of CTC and ctDNA genomic alterations is feasible and should enable real-time tracking of response/progression, tumor evolution and opportunities for precision medicine interventions.
    • Serial monitoring of genomic alterations in circulating tumor cells of ER-positive/HER2-negative advanced breast cancer: feasibility of precision oncology biomarker detection

      Cani, A. K.; Dolce, E. M.; Darga, E. P.; Hu, K.; Liu, C. J.; Pierce, Jackie; Bradbury, Karen; Kilgour, Elaine; Aung, K.; Schiavon, G.; et al. (2021)
      Nearly all estrogen receptor (ER)-positive (POS) metastatic breast cancers become refractory to endocrine (ET) and other therapies, leading to lethal disease presumably due to evolving genomic alterations. Timely monitoring of the molecular events associated with response/progression by serial tissue biopsies is logistically difficult. Use of liquid biopsies, including circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) might provide highly informative, yet easily obtainable, evidence for better precision oncology care. Although ctDNA profiling has been well investigated, the CTC precision oncology genomic landscape and the advantages it may offer over ctDNA in ER-POS breast cancer remain largely unexplored. Whole blood (WB) specimens were collected at serial time points from patients with advanced ER-POS/HER2-negative (NEG) advanced breast cancer in a phase I trial of AZD9496, an oral selective ER degrader (SERD) ET. Individual CTC were isolated from WB using tandem CellSearch® /DEPArray™ technologies and genomically profiled by targeted single-cell DNA next-generation sequencing (scNGS). High-quality CTC (n=123) from 12 patients profiled by scNGS showed 100% concordance with ctDNA detection of driver estrogen receptor α (ESR1) mutations. We developed a novel CTC-based framework for precision medicine actionability reporting (MI-CTCseq) that incorporates novel features, such as clonal predominance and zygosity of targetable alterations, both unambiguously identifiable in CTC compared to ctDNA. Thus, we nominated opportunities for targeted therapies in 73% of patients, directed at alterations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), fibroblast growth factor receptor 2 (FGFR2) and KIT proto-oncogene, receptor tyrosine kinase (KIT). Intra-patient, inter-CTC genomic heterogeneity was observed, at times between timepoints, in subclonal alterations. Our analysis suggests that serial monitoring of the CTC genome is feasible and should enable real-time tracking of tumor evolution during progression, permitting more combination precision medicine interventions.