Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug.
Authors
Mercier, ICamacho, J
Titchen, K
Gonzales, D
Quann, K
Bryant, K
Molchansky, A
Milliman, J
Whitaker-Menezes, D
Sotgia, Federica
Jasmin, J
Schwarting, R
Pestell, R
Blagosklonny, M
Lisanti, Michael P
Affiliation
Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.Issue Date
2012-07
Metadata
Show full item recordAbstract
Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice). Mammary tumors grown in a Cav-1-deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1-deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1-deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1-deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1-deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1-deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues).Citation
Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. 2012, 181 (1):278-93 Am J PatholJournal
American Journal of PathologyDOI
10.1016/j.ajpath.2012.03.017PubMed ID
22698676Type
ArticleLanguage
enISSN
1525-2191ae974a485f413a2113503eed53cd6c53
10.1016/j.ajpath.2012.03.017
Scopus Count
Collections
Related articles
- Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: Caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells.
- Authors: Williams TM, Sotgia F, Lee H, Hassan G, Di Vizio D, Bonuccelli G, Capozza F, Mercier I, Rui H, Pestell RG, Lisanti MP
- Issue date: 2006 Nov
- Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
- Authors: Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, Sotgia F, Lisanti MP
- Issue date: 2012 Aug 15
- Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation.
- Authors: Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP
- Issue date: 2010 Jun 1
- Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment.
- Authors: Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F
- Issue date: 2010 Sep 1
- Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts.
- Authors: Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP
- Issue date: 2011 Feb 15