Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients.
Authors
Saleem, AzeemMatthews, Julian C
Ranson, Malcolm R
Callies, S
André, V
Lahn, M
Dickinson, C
Prenant, Christian
Brown, Gavin
McMahon, Adam
Talbot, D C
Jones, Terry
Price, Patricia M
Affiliation
Academic Radiation Oncology, The University of Manchester, The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester, UK;Issue Date
2011
Metadata
Show full item recordAbstract
Antisense oligonucleotides (ASOs) have potential as anti-cancer agents by specifically modulating genes involved in tumorigenesis. However, little is known about ASO biodistribution and tissue pharmacokinetics (PKs) in humans, including whether sufficient delivery to target tumor tissue may be achieved. In this preliminary study in human subjects, we used combined positron emission and computed tomography (PET-CT) imaging and subsequent modeling analysis of acquired dynamic data, to examine the in vivo biodistribution and PK properties of LY2181308 - a second generation ASO which targets the apoptosis inhibitor protein survivin. Following radiolabeling of LY2181308 with methylated carbon-11 ([(11)C]methylated-LY2181308), micro-doses (<1mg) were administered to three patients with solid tumors enrolled in a phase I trial. Moderate uptake of [(11)C]methylated-LY2181308 was observed in tumors (mean=32.5ng*h /mL, per mg administered intravenously). Highest uptake was seen in kidney and liver and lowest uptake was seen in lung and muscle. One patient underwent repeat analysis on day 15 of multiple dose therapy, during administration of LY2181308 (750mg), when altered tissue PKs and a favorable change in biodistribution was seen. [(11)C]methylated-LY2181308 exposure increased in tumor, lung and muscle, whereas renal and hepatic exposure decreased. This suggests that biological barriers to ASO tumor uptake seen at micro-doses were overcome by therapeutic dosing. In addition, (18)F-labeled fluorodeoxyglucose (FDG) scans carried out in the same patient before and after treatment showed up to 40% decreased tumor metabolism. For the development of anti-cancer ASOs, the results provide evidence of LY2181308 tumor tissue delivery and add valuable in vivo pharmacological information. For the development of novel therapeutic agents in general, the study exemplifies the merits of applying PET imaging methodology early in clinical investigations.Citation
Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients. 2011, 1:290-301 TheranosticsJournal
TheranosticsPubMed ID
21772926Type
ArticleLanguage
enISSN
1838-7640Related articles
- Tumor survivin is downregulated by the antisense oligonucleotide LY2181308: a proof-of-concept, first-in-human dose study.
- Authors: Talbot DC, Ranson M, Davies J, Lahn M, Callies S, André V, Kadam S, Burgess M, Slapak C, Olsen AL, McHugh PJ, de Bono JS, Matthews J, Saleem A, Price P
- Issue date: 2010 Dec 15
- Integrated analysis of preclinical data to support the design of the first in man study of LY2181308, a second generation antisense oligonucleotide.
- Authors: Callies S, André V, Patel B, Waters D, Francis P, Burgess M, Lahn M
- Issue date: 2011 Mar
- Radiochemical synthesis, rodent biodistribution and tumor uptake, and dosimetry calculations of [¹¹C] methylated LY2181308.
- Authors: Dence CS, Laforest R, Sun X, Sharp TL, Welch MJ, Mach RH
- Issue date: 2010 Dec
- Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML).
- Authors: Erba HP, Sayar H, Juckett M, Lahn M, Andre V, Callies S, Schmidt S, Kadam S, Brandt JT, Van Bockstaele D, Andreeff M
- Issue date: 2013 Aug
- More advantages in detecting bone and soft tissue metastases from prostate cancer using (18)F-PSMA PET/CT.
- Authors: Pianou NK, Stavrou PZ, Vlontzou E, Rondogianni P, Exarhos DN, Datseris IE
- Issue date: 2019 Jan-Apr