Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism.
Authors
Ertel, ATsirigos, A
Whitaker-Menezes, D
Birbe, R
Pavlides, S
Martinez-Outschoorn, U
Pestell, R
Howell, Anthony
Sotgia, F
Lisanti, M
Affiliation
The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.Issue Date
2012-01-15
Metadata
Show full item recordAbstract
Aging drives large systemic reductions in oxidative mitochondrial function, shifting the entire body metabolically towards aerobic glycolysis, a.k.a, the Warburg effect. Aging is also one of the most significant risk factors for the development of human cancers, including breast tumors. How are these two findings connected? One simplistic idea is that cancer cells rebel against the aging process by increasing their capacity for oxidative mitochondrial metabolism (OXPHOS). Then, local and systemic aerobic glycolysis in the aging host would provide energy-rich mitochondrial fuels (such as L-lactate and ketones) to directly "fuel" tumor cell growth and metastasis. This would establish a type of parasite-host relationship or "two-compartment tumor metabolism", with glycolytic/oxidative metabolic-coupling. The cancer cells ("the seeds") would flourish in this nutrient-rich microenvironment ("the soil"), which has been fertilized by host aging. In this scenario, cancer cells are only trying to save themselves from the consequences of aging, by engineering a metabolic mutiny, through the amplification of mitochondrial metabolism. We discuss the recent findings of Drs. Ron DePinho (MD Anderson) and Craig Thomspson (Sloan-Kettering) that are also consistent with this new hypothesis, linking cancer progression with metabolic aging. Using data mining and bioinformatics approaches, we also provide key evidence of a role for PGC1a/NRF1 signaling in the pathogenesis of (1) two-compartment tumor metabolism, and (2) mitochondrial biogenesis in human breast cancer cells.Citation
Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. 2012, 11 (2):253-63 Cell CycleJournal
Cell CycleDOI
10.4161/cc.11.2.19006PubMed ID
22234241Type
ArticleLanguage
enISSN
1551-4005ae974a485f413a2113503eed53cd6c53
10.4161/cc.11.2.19006
Scopus Count
Collections
Related articles
- Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
- Authors: Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P, Minetti C, Lisanti MP, Sotgia F
- Issue date: 2011 Dec 1
- Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment.
- Authors: Salem AF, Al-Zoubi MS, Whitaker-Menezes D, Martinez-Outschoorn UE, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Galbiati F, Bevilacqua G, Sotgia F, Lisanti MP
- Issue date: 2013 Mar 1
- Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
- Authors: Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, Casimiro MC, Aquila S, Ando' S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP
- Issue date: 2012 Aug
- Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
- Authors: Martinez-Outschoorn U, Sotgia F, Lisanti MP
- Issue date: 2014 Apr
- Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.
- Authors: Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP
- Issue date: 2012 Apr 1