• Login
    View Item 
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    •   Home
    • The Christie Research Publications Repository
    • All Christie Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChristieCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    Local Links

    The Christie WebsiteChristie Library and Knowledge Service

    Statistics

    Display statistics

    Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Migneco, Gemma
    Whitaker-Menezes, Diana
    Chiavarina, Barbara
    Castello-Cros, Remedios
    Pavlides, Stephanos
    Pestell, Richard G
    Fatatis, Alessandro
    Flomenberg, Neal
    Tsirigos, Aristotelis
    Howell, Anthony
    Martinez-Outschoorn, Ubaldo E
    Sotgia, Federica
    Lisanti, Michael P
    Show allShow less
    Affiliation
    Departments of Stem Cell Biology & Regenerative Medicine, and Cancer Biology and The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
    Issue Date
    2010-06-06
    
    Metadata
    Show full item record
    Abstract
    Previously, we proposed a new model for understanding the Warburg effect in tumorigenesis and metastasis. In this model, the stromal fibroblasts would undergo aerobic glycolysis (a.k.a., the Warburg effect)-producing and secreting increased pyruvate/lactate that could then be used by adjacent epithelial cancer cells as "fuel" for the mitochondrial TCA cycle, oxidative phosphorylation, and ATP production. To test this model more directly, here we used a matched set of metabolically well-characterized immortalized fibroblasts that differ in a single gene. CL3 fibroblasts show a shift towards oxidative metabolism, and have an increased mitochondrial mass. In contrast, CL4 fibroblasts show a shift towards aerobic glycolysis, and have a reduced mitochondrial mass. We validated these differences in CL3 and CL4 fibroblasts by performing an unbiased proteomics analysis, showing the functional upregulation of 4 glycolytic enzymes, namely ENO1, ALDOA, LDHA and TP I1, in CL4 fibroblasts. Many of the proteins that were upregulated in CL4 fibroblasts, as seen by unbiased proteomics, were also transcriptionally upregulated in the stroma of human breast cancers, especially in the patients that were prone to metastasis. Importantly, when CL4 fibroblasts were co-injected with human breast cancer cells (MDA-MB-231) in a xenograft model, tumor growth was dramatically enhanced. CL4 fibroblasts induced a >4-fold increase in tumor mass, and a near 8-fold increase in tumor volume, without any measurable increases in tumor angiogenesis. In parallel, CL3 and CL4 fibroblasts both failed to form tumors when they were injected alone, without epithelial cancer cells. Mechanistically, under co-culture conditions, CL4 glycolytic fibroblasts increased mitochondrial activity in adjacent breast cancer cells (relative to CL3 cells), consistent with the "Reverse Warburg Effect". Notably, Western blot analysis of CL4 fibroblasts revealed a significant reduction in caveolin-1 (Cav-1) protein levels. In human breast cancer patients, a loss of stromal Cav-1 is associated with an increased risk of early tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. Thus, loss of stromal Cav-1 may be an effective marker for predicting the "Reverse Warburg Effect" in the stroma of human breast cancer patients. As such, CL4 fibroblasts are a new attractive model for mimicking the "glycolytic phenotype" of cancer-associated fibroblasts. Nutrients derived from glycolytic cancer associated fibroblasts could provide an escape mechanism to confer drug-resistance during anti-angiogenic therapy, by effectively reducing the dependence of cancer cells on a vascular blood supply.
    Citation
    Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. 2010, 9 (12): Cell Cycle
    Journal
    Cell Cycle
    URI
    http://hdl.handle.net/10541/111175
    DOI
    10.4161/cc.9.12.11989
    PubMed ID
    20562527
    Type
    Article
    Language
    en
    ISSN
    1551-4005
    ae974a485f413a2113503eed53cd6c53
    10.4161/cc.9.12.11989
    Scopus Count
    Collections
    All Christie Publications
    All Paterson Institute for Cancer Research
    Medical Oncology

    entitlement

    Related articles

    • The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
    • Authors: Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP
    • Issue date: 2009 Dec
    • Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.
    • Authors: Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP
    • Issue date: 2011 Dec 15
    • The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts.
    • Authors: Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP
    • Issue date: 2010 May 15
    • Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.
    • Authors: Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Chiavarina B, Pestell RG, Howell A, Sotgia F, Lisanti MP
    • Issue date: 2011 Dec 1
    • Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    • Authors: Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, Sotgia F, Lisanti MP
    • Issue date: 2012 Aug 15
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.