The development of composite circulating biomarker models for use in anti-cancer drug clinical development.
Affiliation
Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester, United Kingdom.Issue Date
2010-06-14
Metadata
Show full item recordAbstract
The development of informative composite circulating biomarkers predicting cancer presence or therapy response is clinically attractive but optimal approaches to modelling are as yet unclear. This study investigated multi-dimensional relationships within an example panel of serum insulin-like growth factor (IGF) peptides using logistic regression (LR), fractional polynomial (FP) regression, artificial neural networks (ANNs), and support vector machines (SVMs) to derive predictive models for colorectal cancer (CRC). Two phase 2 biomarker validation analyses were performed: controls were ambulant adults (n = 722); cases were: (i) CRC patients (n = 90) and (ii) patients with acromegaly (n = 52), the latter as "positive" discriminators. Serum IGF-I, IGF-II, IGF binding protein (IGFBP)-2, and -3 were measured. Discriminatory characteristics were compared within and between models. For the LR, FP and ANN models, and to a lesser extent SVMs, the addition of covariates at several steps improved discrimination characteristics. The optimum biomarker combination discriminating CRC versus controls was achieved using ANN models [sensitivity, 94%; specificity, 90%; accuracy, 0.975 (95% CIs: 0.948 1.000)]. ANN modelling significantly outperformed LR, FP, and SVM in terms of discrimination (P < 0.0001) and calibration. The acromegaly analysis demonstrated expected high performance characteristics in the ANN model [accuracy, 0.993 (95% CIs: 0.977, 1.000)]. Curved decision surfaces generated from the ANNs revealed the potential clinical utility. This example demonstrated improved discriminatory characteristics within the composite biomarker ANN model and a final model that outperformed the three other models. This modelling approach forms the basis to evaluate composite biomarkers as pharmacological and predictive biomarkers in future clinical trials.Citation
The development of composite circulating biomarker models for use in anti-cancer drug clinical development. 2010: Int J CancerJournal
International Journal of CancerDOI
10.1002/ijc.25513PubMed ID
20549702Type
ArticleLanguage
enISSN
1097-0215ae974a485f413a2113503eed53cd6c53
10.1002/ijc.25513
Scopus Count
Collections
Related articles
- Serum insulin-like growth factor (IGF)-I and IGF-binding proteins in lung cancer patients.
- Authors: Lee DY, Kim SJ, Lee YC
- Issue date: 1999 Aug
- Plasma insulin-like growth factor-binding protein-2 levels as diagnostic and prognostic biomarker of colorectal cancer.
- Authors: Liou JM, Shun CT, Liang JT, Chiu HM, Chen MJ, Chen CC, Wang HP, Wu MS, Lin JT
- Issue date: 2010 Apr
- The effect of epidermal growth factor on circulating levels of free and total IGF-I and IGF-binding proteins in adult rats.
- Authors: Frystyk J, Vinter-Jensen L, Skjaerbaek C, Flyvbjerg A
- Issue date: 1996 Mar
- Decreased bioavailability of insulin-like growth factor-I, a cause of catabolism in hemodialysis patients?
- Authors: Lindgren BF, Odar-Cederlöf I, Ericsson F, Brismar K
- Issue date: 1996 Sep
- Free and total insulin-like growth factor (IGF)-I, -II, and IGF binding protein-1, -2, and -3 serum levels in patients with active thyroid eye disease.
- Authors: Krassas GE, Pontikides N, Kaltsas T, Dumas A, Frystyk J, Chen JW, Flyvbjerg A
- Issue date: 2003 Jan