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Abstract:

S100A8/A9 is a proinflammatory protein and plays an essential role in the pathogenesis of
myelodysplastic syndromes (MDS) via the S100A8/A9-Toll-like receptors axis. While S100A8/A9 levels
have been used as biomarkers in many inflammatory diseases, their clinical relevance has not been
conclusively resolved in MDS. To address this, we used an enzyme-linked immunosorbent assay to
quantify S100A8/A9 heterodimers in bone marrow (BM) plasma from 215 MDS patients and compared
S100A8/A9 levels across patients with various disease risks and genotypes. S100A8/A9 levels
correlated with ASXL1 variant allele frequencies significantly. Moreover, mutant ASXL1 with
concurrent RUNX1, STAG2, ZRSR2, or EZH2 mutations was associated with higher S100A8/A9 levels. We
further showed that higher S100A8/A9 independently predicted inferior leukemia-free survival and
overall survival in MDS patients, irrespective of age, Revised International Prognostic Scoring
System subgroups, and known detrimental mutations. Lastly, through deep-sequenced transcriptomic
analysis, we demonstrated that higher S100A8/A9 in the BM intimated a perturbed microenvironment
with enhanced myeloid-derived suppressor cell-mediated tumor immune escape signal, altered
metabolism, and impairment in the functions and quantities of CD8+ T cells and NK cells. S100A8/A9
in the BM microenvironment may be a potential biomarker in the prognostication of MDS and target
for novel therapy.
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The data reported in this article may be accessed through reasonable requests from the

corresponding authors: lincc@ntu.edu.tw or hftien@ntu.edu.tw. RNAseq data are available in GEO

with access number GSE223305.
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TO THE EDITOR,

Myelodysplastic syndromes (MDS) represent a heterogeneous group of malignant hematopoietic
stem cell (HSC) disorders'>. Recent advances in the immunome of the bone marrow (BM)
microenvironment identified aberrant immune activation and proinflammatory signaling as vital
drivers in MDS pathogenesis*®. Among these complex networks, the S100A8/A9-Toll-like receptor

(TLRs) axis is a critical MDS phenotypes definer’.

The inflammatory proteins S100A8 and S100A9 often exist as a heterodimer under physiological
conditions®. In MDS, S100A8/A9 is synthesized and secreted by, among others, myeloid-derived
suppressor cells (MDSCs), which play a central role in pathogenesis®. The ligation of S100A8/A9 to
TLR4 leads to NF-kB-mediated transcription and subsequent production of pro-inflammatory
cytokines, and the induction of NLRP3 inflammasome™*°, which consequently drives pyroptosis of

11,12

HSCs and an inflammatory milieu in the BM . While S100A8/A9 serves as biomarkers in various

13-15 "its clinical implication in MDS is not fully deciphered™®.

diseases
To investigate the clinical and microenvironmental relevance of S100A8/A9 in MDS patients, we
recruited 215 MDS patients at the National Taiwan University Hospital and quantified BM plasma
S100A8/A9 dimer levels by Enzyme-linked immunosorbent assay (Supplemental Method). Genomic

DNA and mRNA were extracted from BM mononuclear cells and sequenced as previously
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described”*®

. Methods for bioinformatic and statistical analysis are detailed in Supplemental
Methods. Patient characteristics are summarized in Table S1. The median age of the patients was
67.5 years. Over a median follow-up duration of 39.7 months, 64 (29.8%) progressed to AML, and
93 patients succumbed to the disease. The National Taiwan University Hospital Research Ethics

Committee approved the study (#201709072RINC). Informed consent was obtained in accordance

with the Helsinki Declaration.

Correlation analysis revealed that the BM plasma S100A8/A9 protein levels significantly correlated
with the mRNA expression in whole BM cell RNA sequencing (r’=0.32 and r’=0.31, respectively,
Figure S1). We then explored the distribution of S100A8/A9 levels (Figure S2A) across disease
subgroups. Patients with MDS/AML (MDS with 10-19% blasts in the BM or peripheral blood) and
concurrently mutated TP53 had higher S100A8/A9 levels than others (Figure S2B). Meanwhile,
there was no difference in SI00A8/A9 levels among patients in the International Prognostic Scoring

System (IPSS) or the Revised IPSS (IPSS-R)? subgroups (Figure S2C-F).

Since prior studies demonstrated the impact of genetic events on innate immune and

1920 hyroptosis and B-catenin signaling®?, and

inflammasome-signaling®, such as the NF-kB pathway

NLRP3 inflammatory pathways’, we examined whether S100A8/A9 concentrations differ across

patients with various genotypes. ASXL1-mutated patients had significantly higher SI00A8/A9 than
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those with unmutated ASXL1 (Figure S2G), while no difference was detected between patients

with/without other epigenetic or splicing gene mutations (Figure S2G-H).

Next, we sought to investigate the relationship between mutant ASXL1 and S100A8/A9 levels.

ASLX1 variant allele frequencies (VAF) significantly correlated with S100A8/A9 levels in 49

ASXL1-mutated patients with available VAFs (Figure 1A). Hierarchical clustering suggested close

associations among mutations in ASXL1, STAG2, RUNX1, EZH2, and ZRSR2 (Figure 1B). Interestingly,

ASXL1-mutated patients with concurrent abovementioned mutations (cluster 1) had a trend of

higher SI00A8/A9 versus those without (cluster 2) (Figure 1C-D).

The 215 MDS patients were subsequently divided into higher- and lower-S100A8/A9 groups with

cutoff point of 7093 ng/mL determined by maximally selected rank statistics. There were no

significant differences in the distribution of disease subgroups according to the International

Classification Consensus (ICC), IPSS-R, and karyotypes between the two groups, but high-S100A8/A9

patients had a higher ASXL1 mutation rate (43.5% vs 21.4%) (Table S1-3).

We then examined the impact of SI00A8/A9 levels on patients’ survival. Higher-S100A8/A9 was

associated with significantly inferior leukemia-free survival (LFS) and overall survival (OS) not only in

the total cohort (Figure 1E), but also in the lower- and higher-risk subgroups based on the ICC and

IPSS-R (Figure 1F-G and Figure S3-4). Time-dependent ROC curve analysis also suggested the
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potential for S100A8/A9 to supplement IPSS-R (Figure 1H). Moreover, despite having higher
frequencies of mutant ASXL1, high-S100A8/A9 patients had poorer survival than the

lower-S100A8/A9 group irrespective of ASXL1 mutation statuses (Figure 1l and Figure S5).

The prognostic implications of S100A8/A9 levels on survival were also demonstrated in patients
carrying different karyotypes (Figure S6) or receiving different treatments (Figure S7). Remarkably,
in 50 patients who received hypomethylating agent monotherapy, higher-S100A8/A9 retained
strong discriminatory prognostic impact on LFS and OS (Figure S8). In multivariable analysis, we
included parameters with a p-value <0.05 in the univariate analysis (Table S4), and hazard ratios
were adjusted with treatments that well-stratified survivals (Figure S9). Higher-S100A8/A9

remained an independent adverse prognostic factor for LFS and OS (Figure 2A).

Considering that RNAseq was performed on whole BM MNCs, we referenced the single-cell dataset
of healthy controls? to identify which cell types contributed to the differentially expressed genes.
Curiously, 18 of the 20 most down-regulated genes (Table S5) in high-S100A8/A9 BM were regularly
expressed by lymphocytes (Figure S10), implying different composition of lymphocytes in higher-
and lower-S100A8/A9 BMs. We further adopted CIBERSORTx18’23, which infers the landscape of
infiltrating immunocytes in the BM from gene expression profiles. Higher-S100A8/A9 was
associated with significantly lower fractions of CD8 T-cells and activated NK-cells (Figure 2B and

Table S6).
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Weighted gene co-expression network analysis revealed that the turquoise and blue modules were
closely associated with lower- and higher-S100A8/A9, respectively (Figure S11). Corresponding to
CIBERSORTXx analysis, the 914 genes in the turquoise module were enriched in pathways involving
NK- and T-cell functions, while the 509 genes in the blue module were enriched in pathways

involving MDSCs in cancer immune escape and altered metabolism (Figure 2C-D).

To the best of our knowledge, this is the first study to significantly stratify MDS patients’ survival
based on S100A8/A9 levels. We also observed that ASXLI1-mutated patients had higher S100A8/A9
concentrations than their unmutated counter partners, corresponding with the increase in NADPH
oxidase and ROS, TLR4 activation and pyroptosis’. Fundamentally, the upregulation of S100A8/A9
can exert genotoxic stress in HSCs, thereby advancing the risk for AML transformation®, in
accordance with our finding that higher-S100A8/A9 group had a shorter LFS. In a homogeneously
treated lower-risk MDS cohort, SI00A8/A9 expression in mesenchymal stem cells was correlated
with p53 and TLR4 upregulation®*. Additionally, high S100A8/A9 concentrations doubled the risk of

leukemic transformation and significantly reduced the time to AML transformation.

Comparisons of the transcriptomic data highlighted differences in functions and properties of
immune cells between higher- and lower-S100A8/A9 BM and suggested a high-risk sub-entity,

which was not considered in current risk stratification, in this heterogenous disease and required
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more attention. However, the lack of external validation, biological validation, and the assessment
of the impact of other inflammasome components, such as cytokines or chemokines, is a major
issue. Meanwhile, the demographics of our MDS population are more similar to Korean patients®,
with a younger and higher-risk skewing when compared to western cohorts, suggesting that the
extrapolation of our data may be compromised. Treatment heterogeneity could also potentially
confound our analysis. Serial follow-up data after treatment will strengthen the prognostic power of
S100A8/A9 and provide more insight into the changes in the BM microenvironment. Additionally,
our findings could be more granular and justified if cytometry by time of flight or single-cell

multi-omics approaches were adopted.

Despite above limitations, this study clearly showed that S100A8/A9 level was an independent poor
prognostic factor in MDS, and higher S100A8/A9 in the BM intimated a perturbed
microenvironment with enhanced MDSC signal and impairment in the functions and quantities of
CD8+ T cells and NK cells. We propose S100A8/A9 can be incorporated to current risk stratification

systems and prospectively assessed in clinical trials.
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Figure legends

Figure 1.

(A) Scatter plots showed a moderate correlation between ASXL1 variant allele frequencies and

S100A8/A9 levels.

(B) Heatmap of correlations among mutations.

(C) Clustering 51 ASXL1-mutated patients based on concurrent mutations of STAG2, RUNX1, EZH2,

and ZRSR2.

(D) Cluster 1 had a trend of higher S100A8/A9 levels than cluster 2.

(E) Higher S100A8/A9 conferred inferior leukemia-free survival (LFS) and overall survival (OS) of the

215 MDS patients.

(F) Higher S100A8/A9 conferred significantly worse OS in International Classification Consensus

lower-risk group and higher-risk group. Higher-risk: MDS with excess blast and MDS/AML; and

lower-risk: others.

(G) Higher S100A8/A9 conferred significantly shorter OS in IPSS-R lower-risk (very low, low, and

intermediate) group and a trend of worse OS in IPSS-R higher-risk (IPSS-R high and very high) group.

(H) Time-dependent ROC curve analyses demonstrate that SI00A8/A9 levels can be complementary

to IPSS-R, increasing area under curves when incorporated.

(1) Patients with higher SI00A8/A9 had significantly inferior OS irrespective of their ASXL1 mutation

statuses.
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Figure 2.

(A) Multivariable analysis for leukemia-free survival (LFS) and overall survival (OS). Statistically

significant if P < 0.007 (adjusted by Bonferroni correction).

Abbreviations: HR, hazard ratios; Cl, confidence interval.

*As continuous variable analysis.

TIPSS-R risk groups: Very low, low, intermediate, high, very high.

*High vs. low S100A8/A9.

§adjusted with different treatments: supportive care only, hematopoietic stem cell transplant (HSCT)

with/without any other treatment, hypomethylating agent with/without other chemotherapies but

HSCT, and all other treatments.

Note: only variables with P value less than or equal to 0.05 in univariate analysis were incorporated

into the multivariable Cox proportional hazard regression analysis.

(B) CIBERSORTx analysis revealing significant differences in the fractions of specific cell types

between higher- and lower-S100A8/A9 BM. There were higher proportions of activated CD4 T-cells,

CD8 T-cells, NK-cells, and naive B-cells in the lower-S100A8/A9 BM while the fractions of naive CD4

T-cell, resting mast cells, monocytes, and neutrophils were higher in the higher-S100A8/A9 BM.

(C&D). Bar charts showed 10 robustly enriched functional pathways in lower-S100A8/A9 (C) and

higher-S100A8/A9 (D) BMs, respectively.
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