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Abstract
Background: There has been huge progress over the last 30 
years in identifying the familial component of breast cancer. 
Summary: Currently around 20% is explained by the high-
risk genes BRCA1 and BRCA2, a further 2% by other high-pen-
etrance genes, and around 5% by the moderate risk genes 
ATM and CHEK2. In contrast, the more than 300 low-pene-
trance single-nucleotide polymorphisms (SNP) now account 
for around 28% and they are predicted to account for most 
of the remaining 45% yet to be found. Even for high-risk 
genes which confer a 40–90% risk of breast cancer, these 
SNP can substantially affect the level of breast cancer risk. 
Indeed, the strength of family history and hormonal and re-
productive factors is very important in assessing risk even for 
a BRCA carrier. The risks of contralateral breast cancer are 
also affected by SNP as well as by the presence of high or 
moderate risk genes. Genetic testing using gene panels is 
now commonplace. Key-Messages: There is a need for a 
more parsimonious approach to panels only testing those 
genes with a definite 2-fold increased risk and only testing 
those genes with challenging management implications, 
such as CDH1 and TP53, when there is strong clinical indica-
tion to do so. Testing of SNP alongside genes is likely to pro-
vide a more accurate risk assessment.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction

The inherited aggregation of breast cancer has been 
intimated for over 130 years [1]. A family history of breast 
cancer in a first-degree relative has been linked to an ap-
proximate 2-fold relative risk [2]. Approximately 4–5% of 
all breast cancers are thought to result from inheriting 
high-risk dominantly inherited pathogenic variants (PV) 
[2] (but only 2–3% result from BRCA1/2 mutations). 
However, around 27% are thought to have some form of 
inherited component, as reported in twin studies [3]. This 
means that the majority of the inherited components of 
breast cancer are likely due to polygenic inheritance rath-
er than inheritance of a single gene PV. 

Relatively few women with breast cancer present with 
a clear pattern of cancers in the family consistent with 
that reported by Broca [1]. However, clusters of breast 
cancers within families, particularly occurring at younger 
ages, are not infrequent and account for approximately 
5% of cases overall [3]. As even genes conferring the high-
est risk do not cause breast cancer in every woman in their 
lifetime unaffected carriers of the “cancer gene” may 
mask true inherited families and chance clusters may 
mimic inherited disease. 

In many instances of familial breast cancer, there is a 
high incidence of other tumors, notably ovarian, prostate, 
and pancreatic cancer or in rarer instances sarcomas and 
brain tumors. Empiric risks for women who have par-
ticular types of family history have been calculated [2] 
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and have led to criteria for proposed enrolment in famil-
ial breast cancer clinics. However, increasingly risk is in-
formed by undertaking panel tests of genes linked to 
breast cancer risk and also tests for multiple common 
variants in a polygenic risk score (PRS).

This paper will cover all of the known genes and ge-
netic variants linked to breast cancer risk from the discov-
ery of the first bona fide breast cancer genes including 
BRCA1 through to the development of PRS from multiple 
single-nucleotide polymorphisms (SNP) discovered 
through genome-wide association studies.

Generally, genes and SNP have been divided into high-
risk genes with an OR ≥4.0 (lifetime risks in European 
populations ≥40%), moderate risk genes with an OR ≥2.0 
but < 4.0 (lifetime risks in European populations ≥20% 
but < 40%), and genetic modifiers with an OR of 1.01–1.5 
(Fig. 1).

Molecular Genetics

High-Risk Breast Cancer Genes
BRCA1
Molecular geneticists started to try to identify breast 

cancer genes in the mid 1980s. By 1990 the first gene 
(BRCA1) had been identified on chromosome 17q by 
linkage analysis in breast cancer families [4]. It quickly 
became apparent that the locus later termed BRCA1 con-
ferred a risk of both breast cancer and ovarian cancer [5], 
as originally predicted by Henry Lynch and Krush [6] 
some 20 years earlier. The gene itself was cloned in 1994 
[7]. The BRCA1 gene is very large, with a 7,207-bp tran-
script. It has only limited homology with any previously 
identified human sequence, and its function is not fully 
clarified. The main functions are homologous repair of 
double-stranded DNA breaks and transcriptional activa-
tion. BRCA1 is predominantly a breast/ovarian cancer 

gene conferring lifetime risks of 50–85% for breast cancer 
and 30–60% for ovarian cancer [8–11]. Initial assess-
ments based on high-risk families tended to provide risk 
estimates only appropriate for that setting [8, 9]. How-
ever, attempts to strip out the biases of familial ascertain-
ment providing very low estimates were not really realis-
tic in relation to the real situation outside of those identi-
fied with no family history of breast or ovarian cancer 
[12]. The best current estimates are based on prospective 
studies [10, 11], which lack the ascertainment bias of the 
earlier historic studies. Nonetheless, clinicians and genet-
ic counsellors should refrain from providing a very spe-
cific risk (e.g., 72% breast cancer risk by age 80 years for 
BRCA1) [11] as the risks will vary with nongenetic risk 
factors such as reproductive factors as well as the degree 
of family history. These factors can be incorporated into 
a model developed from the BOADICEA algorithm called 
CanRisk [13]. The addition of a PRS from SNP (see be-
low) is likely to provide an even more accurate likelihood 
of the breast and ovarian cancer risk, with overall likeli-
hoods varying from as little as 45% to > 95% for female 
breast cancer in BRCA1 [14]. The risks of estrogen recep-
tor negative (ER–) breast cancer varied from 59 to 83% at 
the 5th and 95th percentiles, while the risks of ovarian 
cancer by age 80 years were 30 and 59% for BRCA1. The 
pathology of BRCA1-related cancers is fairly specific, 
with the great majority of ovarian cancers being high 
grade serous and around 70% of breast cancers being duc-
tal triple negative (negative for HER2, ER, and progester-
one receptor) [15]. There is no evidence of an increased 
risk of mucinous ovarian cancer [15, 16] and this should 
be discounted in algorithms to predict the likelihood of 
BRCA1, as it is in the pathology-adjusted scoring system 
[17]. Similarly, HER2 positivity is uncommon in BRCA1 
PV carriers and should reduce the likelihood of finding a 
causative variant [17]. There is no strong convincing evi-
dence for the risk of other cancers in BRCA1 carriers [18]. 

Fig. 1. Relative risk and allele frequencies of 
high-, moderate-, and low-risk genetic 
variants.
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A number of other cancers have been shown to poten-
tially be related, including early-onset prostate cancer 
[19, 20], colorectal cancer [19, 21], endometrial cancer 
[19, 22], and pancreatic cancer [20]. However, the OR for 
these cancers are generally < 3-fold and have not been 
convincingly replicated [18, 23, 24]. Although there may 
be a specific risk of high-grade serous endometrial cancer 
as this translates to < 10% of all endometrial cancers, this 
is unlikely to translate into a substantial OR for endome-
trial cancer as a whole [24]. Furthermore, a study com-
paring BRCA1 and BRCA2 found that it was BRCA2 that 
harbored the truly more heterogeneous cancer risk [25]. 
Indeed, the only prospective study of early detection out-
side of breast and ovarian cancer showed no evidence of 
benefit for prostate cancer in BRCA1, with cancer inci-
dence not being significantly increased compared to con-
trols [26]. Overall, BRCA1 carriers should be advised that 
there is unconvincing evidence of substantial increased 
risks of cancers beyond breast and ovarian cancer and 
that if there is any increased risk it is unlikely to be suffi-
cient to warrant early detection measures.

BRCA2
Soon after the BRCA1 locus was identified, it became 

clear that many large breast cancer kindreds, particularly 
those with an affected male, were not accounted for by 
BRCA1. A second locus, i.e., BRCA2, was mapped by fam-
ily linkage analysis to chromosome 13q in 1994 and with-
in a year the gene had been isolated [27]. The size of the 
gene is even greater than that of BRCA1 (11,386 bp), with 
which it shows some homology particularly with regard 
to homologous repair and cancer predisposition. BRCA2 
PV confer female lifetime risks of 40–87% for breast can-
cer and 10–30% for ovarian cancer [8–11, 28]. The effect 
of a breast cancer family history on breast cancer risk is 
even greater for women with BRCA2 PV [8–11, 28]. Esti-
mates of the BRCA2 breast cancer risk have been as low 
as 38%, stripping out any additional familial risk effects 
[12]. However, these studies, which rely on historic data, 
include women born before 1930 in whom breast cancer 
risks are much lower than those for modern day women 
[28]. Again, the best current risk estimates are based on 
prospective studies [10, 11]. Like for BRCA1, clinicians 
and genetic counsellors should refrain from providing a 
very specific risk, such as 69% breast cancer risk by age 80 
years for BRCA2 [11], as similarly to BRCA1 the risks will 
vary with nongenetic risk factors such as reproductive 
factors as well as the degree of family history. These fac-
tors can be incorporated into a model developed from the 
BOADICEA algorithm called CanRisk to give a personal-
ized risk assessment based on germline genetic and other 
known risk factors [13]. The addition of a PRS from SNP 
(see below) is likely to provide an even more accurate like-
lihood of breast and ovarian cancer risks, with overall 

likelihoods varying from as little as 43% to > 95% for fe-
male breast cancer in BRCA2 [14]. The risks breast cancer 
varied from 57–81% at the 5th and 95th percentile, but 
they were as little as 43% with no family history and as 
high as 85% with a family history of breast cancer. Like-
wise, the ovarian cancer risks by age 80 years at the 5th 
and 95th percentile were 10 and 28% for BRCA2. The pa-
thology of BRCA2-related breast cancer is not as specific 
as that for BRCA1, although there is a trend toward high-
er-grade ductal ER+ PR+ HER2–, with only 16% of cases 
being triple negative, but unlike BRCA1 the likelihood of 
triple-negative increases with age [15]. HER2 positivity is 
less common but not as infrequent as for BRCA1 PV car-
riers [17]. The great majority of ovarian cancers are high-
grade serous [15]. Similarly to BRCA1, there is no evi-
dence of an increased risk of mucinous ovarian cancer 
[15, 16]. Males have a substantially increased risk of breast 
cancer, with a lifetime risks of 5–14% [29, 30]. One study 
using a PRS found that the risk of breast cancer by age 80 
years is 5% for men at the 5th percentile of the PRS and 
14% for men at the 95th percentile [30]. In addition to 
breast and ovarian cancer risk, BRCA2 PV clearly also 
predispose to prostate cancer (OR = 2.5–6.3), pancreatic 
cancer (OR = 3.5–5.9), gastric cancer (OR = 2.4–2.59), 
and various skin cancers including melanoma, all of 
which have been validated in at least 2 studies [18, 31–33]. 
Though rare, ocular (uveal) melanoma appears to also be 
strongly linked [18, 34]. As above, a study comparing 
BRCA1 and BRCA2 found that BRCA2 conferred the 
greater cancer risk beyond breast and ovarian cancer [25]. 
The prospective IMPACT study of early detection of 
prostate cancer showed an excess risk in BRCA2 carriers 
and that PSA was effective at earlier detection of the pre-
dominantly more aggressive higher Gleason score pros-
tate cancer [26].

Li-Fraumeni Syndrome and TP53
Even before the identification of BRCA1/2, the TP53 

gene had been implicated in hereditary breast cancer as 
part of the Li-Fraumeni cancer family syndrome [35]. It 
was, however, recognized that this accounted for only a 
very small proportion of breast cancer families and sub-
sequent studies confirmed this impression. Nonetheless, 
mutations in TP53 may account for almost as many breast 
cancers in patients ≤30 years of age as BRCA2 [36], and 
diagnosis at an age ≤30 years is a criterion for testing by 
the Chompret criteria [37]. Overall, 2–8% of breast can-
cers in patients aged ≤30 years harbor a TP53 germline 
PV and these are more common with HER2+ invasive 
disease and high-grade comedo-DCIS [38]. Detection 
rates drop dramatically after 30 years of age, and testing 
of women after age 45 years with no previous malignancy 
and no other element of Chompret criteria fulfilled (no 
typical Li-Fraumeni cancer in a close relative) is not rec-
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ommended [37]. This is due to the much likelier possi-
bilities of identifying clonal hematopoiesis of indetermi-
nant potential (CHIP) or a variant of uncertain signifi-
cance, which could be misclassified as likely pathogenic 
erroneously [37]. People identified as carrying PV in 
TP53 have a very high lifetime risk of malignancy, al-
though this may vary with the exact variant, with domi-
nant negative missense variants in the core binding do-
main conferring the highest risks [37]. There are particu-
larly high risks of sarcoma, especially osteosarcoma and 
embryonal rhabdomyosarcoma, gliomas, and other brain 
malignancies such as choroid plexus carcinoma and 
SHH-medulloblastoma as well as adrenocortical carcino-
ma [37]. Although screening has been shown to have an 
impact, with whole-body MRI, breast MRI, and dedicated 

brain MRI now being recommended, the psychological 
impact of being identified as a TP53 PV carrier or errone-
ously being misdiagnosed is considerable.

Cowden Syndrome and PTEN
The PTEN gene on chromosome 10q has been identi-

fied as the causal gene in Cowden syndrome, in which 
early-onset breast cancer is associated with a variety of 
other features including hamartomas of the skin and mu-
cous membranes, thyroid adenomas and cancer, colonic 
polyps (including juvenile polyps), and craniomegaly 
[39]. While prospective breast cancer risk data is lacking 
due to its rarity, women with Cowden syndrome are at a 
high breast cancer risk and ought be offered equivalent 
high-risk breast cancer risk reduction measures. Addi-

Table 1. Genes associated with a moderate or high lifetime risk of breast cancer and effects on life expectancy

Disease
gene

Location Tumors Tumor 
age, years

Risk, % Birth incidence
of PV

Life 
expectancya

High-risk genes
BRCA1 17q Breast (women)

Ovary
>18
>35

50–90
30–60

1 in 800 62 years

BRCA2 13q Breast (women)
Ovary

>18
>40

40–90
10–30

1 in 4–800 68 years

Prostate (men) >30 25
Pancreas >30 5

LFS
TP53a

17p Sarcoma 1st 80 1 in 5,000 Severely 
reducedBreast cancer (women) >16 80–95

Gliomas 1st 20

PALB2 16 Breast cancer
Ovarian cancer
Pancreatic cancer

>25
>40
>40

40–60
4–5
2–3

<1 in 1,000 Normal

HDGC
CDH1a

16q Gastric
Breast

>16
>20

70–80
40–80

Very rare Reduced

PTEN 
Cowden

10q Breast cancer >25 60 1 in 
10,000–250,000

Reduced 
in women

Thyroid 30 10

STK11 19p Gastrointestinal malignan-
cy

20 60 1 in 25,000 58 years

Breast >30 30–50

Moderate-risk genes
CHEK2 22q Breast cancer >25 40 1 in 200 Normal

ATM 11q Breast cancer >25 20 1 in 300 Normal

RAD51D 17 Breast cancer
Ovary

>25
>40

20
5–10

1 in 1,000 Normal

RAD51C 17 Breast cancer
Ovary

>25
>40

20
5–10

1 in 1,000 Normal

NF1 17q Neurofibroma 1st 100 1 in 2–3,000 54–72 years
Glioma 1st 12
Breast cancer >25 17

BARD1 2 Breast cancer >25 20 1 in 1,000 Normal

a Will include mortality from other cancers associated with PV of that cancer predisposition gene.
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tional tumor risks include thyroid cancer and endome-
trial cancer. Due to its rarity and usual syndromic features 
of marked macrocephaly, PTEN is rarely found on gene 
panels in the absence of diagnostic features (< 0.1%) [40].

Peutz-Jeghers Syndrome and STK11 
STK11 (LKB1) is associated with the dominantly in-

herited condition Peutz-Jeghers syndrome (PJS), which is 
characterized by typical benign PJS polyps throughout 
the gastrointestinal tract and muco-cutaneous pigmenta-
tion (particularly on the lips). The breast cancer risk is 
probably between 40 and 60% lifelong [41]. Due to the 
rarity and distinct clinical features of PJS, STK11 PV are 
extremely rarely found on gene panels (Table 1).

Hereditary Diffuse Gastric Cancer and CDH1
Mutations in the gene CDH1 causes the dominantly 

inherited condition hereditary diffuse gastric cancer. 
Women with mutations in CDH1 again have a 40–60% 
lifetime risk of breast cancer, often of lobular histology 
[42]. Due to its rarity and frequent family history of dif-
fuse gastric cancer, CDH1 is rarely found on gene panels 
(< 0.1%) [40], and some countries recommend that it be 
excluded from gene panels in the absence of familial lob-
ular cancer or diffuse gastric cancer due to the conse-
quences of erroneously identifying women as PV carriers 
[43].

PALB2
Upon first identification, PALB2 was identified as a 

moderate-penetrance breast cancer susceptibility gene. 
In a case-control study, 10 truncating PV were identified 
in 923 individuals with familial breast cancer but no PV 
were identified in 1,084 healthy controls (p = 0.0004) [44]. 
Despite the absence in controls, the relative risk of breast 
cancer associated with a PV in PALB2 was only assessed 
as moderate in this discovery paper with a 2-fold OR [44]. 
However, subsequent assessment of risk in families con-
firmed a high risk, with an OR of 7.18 (95% CI 5.82–8.85; 
p = 6.5 × 10–76), and a lifetime risk of around 50% [45]. As 
with BRCA2 the risks vary based on the family history and 
presumably the SNP PRS profile [45]. There is likely a 
small increase in the ovarian cancer risk and the evidence 
for an increased risk of pancreatic cancer is also fairly ro-
bust [45].

Moderate-Risk Genes
Ataxia-Telangiectasia
Ataxia-telangiectasia (ATM) was the first moderate-

penetrance breast cancer gene for which there was strong 
clinical evidence. The possibility that ATM could be a 
breast cancer susceptibility gene was first proposed near-
ly 40 years ago when epidemiologists suggested that rela-
tives of patients with an autosomal recessive condition 

called ATM, which predisposes to cancer in childhood, 
particularly lymphoid cancers, had an increased risk of 
breast cancer. The role of ATM in breast cancer suscepti-
bility has been investigated in many studies. The first con-
clusive study identified 12 mutations in 443 familial 
breast cancer cases and 2 in healthy controls (p = 0.0047), 
suggesting that the relative risk in female ATM mutation 
carriers is 2.37 [46]. A 2- to 3-fold OR for ATM has been 
confirmed in many studies, consistent with lifetime risks 
of 20–30% [47]. There is nonetheless evidence of one 
dominant negative missense variant in ATM c.7271T>G, 
i.e., p.(Val2424Gly), that is consistent with a 60% lifetime 
risk [48, 49]. However, the risks for other missense vari-
ants may be < 2-fold and these are difficult to classify [47, 
50].

CHEK2
CHEK2 is a gene that encodes a cell cycle checkpoint 

protein kinase that phosphorylates TP53 and BRCA1 and 
is involved in DNA repair. The relative risk of breast can-
cer in carriers of the CHEK2 c.1100delC allele was esti-
mated to be 2.2 [51], and it appears to be similar for oth-
er truncating PV in CHEK2 [47]. Missense variants can 
be associated with increased risks, but these are generally 
below 2-fold [47]. PRS appear to be helpful in more ac-
curately defining risk in CHEK2 PV carriers [52], and in-
dividual risks can be assessed taking into account repro-
ductive and other risk factors as for BRCA1/2 [13]. There 
are no clear additional risks to CHEK2 PV carriers, al-
though increased risks of colorectal and prostate cancer 
have been found in some studies.

Neurofibromatosis 1
Women with the inherited tumor-prone condition 

neurofibromatosis 1 (NF1) are now thought to be at a 
moderately increased risk of developing breast cancer 
[53–55]. There is a particularly high OR in patients aged 
< 50 years, with a 10% risk by that age, after which the risk 
levels off [54]. The breast tumors associated with NF1 PV 
have adverse pathological features, with higher propor-
tions of grade 3 ER– and HER2+ and poor survival [55, 
56]. As NF1 is an easy syndromic diagnosis with clini-
cally easily detectable features (café au lait patches, skin 
neurofibromas) in the vast majority of individuals gene 
panel testing is unlikely to be required and it is very un-
likely that testing will find a PV in NF1 without these fea-
tures [57].

Each of these moderate penetrance genes makes a rel-
atively small contribution to the overall familial risk of 
breast cancer. Compared to the 16–18% of familial risk 
accounted for by mutations in BRCA1 and BRCA2, cur-
rently it is estimated that moderate-penetrance breast 
cancer susceptibility genes only account for 6–7% of the 
familial risk (Fig. 2). In keeping with findings in BRCA1 
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and BRCA2, most of the PV in these genes lead to prema-
ture protein truncation through nonsense codons or 
translational frameshifts. A very small number are pos-
sibly due to missense sequence variants. The moderate-
penetrance breast cancer susceptibility genes each harbor 
multiple different rare PV. 

Other Probable Moderate-Risk Genes
Three further genes that had previously been linked to 

breast cancer risk, but for which validation studies were 
inconclusive, were also supported in the BRIDGES study 
of 60,000 cases and 53,000 controls as having close to a 
2-fold relative risk. These are the ovarian cancer genes 
RAD51C (OR = 1.93; 95% CI 1.20–3.11) and RAD51D 
(OR = 1.80; 95% CI 1.11–2.93) as well as BARD1 (OR = 
2.09; 95% CI 1.35–3.23). All 3 genes were particularly 
strongly linked to triple-negative breast cancer [47].

Genes Probably Spuriously Linked to Breast Cancer
BRIP1
In 2006 BRIP1, a BRCA1-interacting helicase (also 

known as BACH1), was also identified as a probable rare 
moderate-penetrance breast cancer susceptibility allele. 
In a case-control study, 9 mutations were identified in 
1,212 familial breast cancer cases compared to 2 in 2,081 
healthy controls (p = 0.003); the relative risk of breast can-
cer in monoallelic carriers of BRIP1 mutations is 2.0 [58]. 
More recent work has, however, shown that the original 
link with breast cancer was spurious [59], and a large 
case-control study of over 60,000 cases showed an OR of 
only 1.11 with a 95% CI (i.e., 0.80–1.53) excluding a 2-fold 
risk [47]. At present, germline BRIP1 mutations are con-
sidered a risk factor for postmenopausal ovarian cancer. 

In addition to BRIP1 a number of other genes identi-
fied as significantly linked to breast cancer have been 
shown by the BRIDGES study to be likely spurious [47]. 
These include NBN (OR = 0.90; 95% CI 0.67–1.20), 
FANCM (OR = 1.06; 95% CI 0.90–1.26), RECQL (OR = 
0.84; 95% CI 0.64–1.10), RAD50 (OR = 1.08; 95% CI 0.83–
1.40), and XRCC2 (OR = 0.96; 95% CI 0.47–1.93).

Missing Heritability of Breast Cancer Predisposition

While recent population-based studies have estimated 
the frequency of germline BRCA1/2 PV to be as high as 1 in 
200 [47, 60], outside of strong founder populations such as 
the Icelandic and Jewish, this is insufficient to account for 
more than 20% of the heritable component of breast cancer 
and only about 2% of all breast cancers [61, 62]. The dis-
crepancy has become even greater with the recognition that 
many women with germline mutations in either BRCA1 or 
BRCA2 have an average lifetime risk of developing breast 
cancer (“penetrance”) of around 65–70% or less rather than 
the 85–90% originally generated from high-risk families. 
While there may be families and individuals with hitherto 
undetected germline BRCA1/2 mutations, or novel mecha-
nisms of disruption, e.g., epigenetic silencing [63], struc-
tural variants, or deep intronic variants causing splicing 
that are missed by standard DNA testing, the evidence for 
these reducing sensitivity by more than 2–5% is limited 
[64]. It is nonetheless likely that the majority of the missing 
heritability is due to the presence of undiscovered low-pen-
etrance genetic modifiers (Fig. 2). 

Low-Risk Genetic Susceptibility
For longer than a decade genome-wide association 

studies have been performed in order to identify associa-
tions between common variants and disease. This has led 
to the robust identification of more than 300 SNP that are 
associated with breast cancer risk [65–83]. These com-
mon low-risk alleles only confer a small risk by them-
selves, but when combined in a PRS the SNP provide a 
more informative risk estimate. It has been estimated that 
these SNP currently explain 28% of the familial risk of 
breast cancer [83] (Fig. 2), though much of the remaining 
45% of the familial component of breast cancer yet to be 
discovered is thought to be likely more SNPs.

Due to the increase in the number of SNP found to be 
associated with breast cancer, and the increasing number 
of patients included in these association studies, sub-
group analysis has shown that there are several SNP that 
are more strongly associated with ER-negative disease 
than with ER-positive disease and vice versa [75, 76, 79, 
83–87]. Similarly, it has been proposed that these SNP 
potentially can be utilized to modify the risk of PV carri-
ers (see above) [88].

Fig. 2. Proportion of the familial component caused by known ge-
netic factors. GWAS, genome-wide association study.
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Numerous studies have validated the predictive power 
of these SNP, as well as their added value for existing pre-
diction models based on classical risk factors [88–94].

The majority of the SNP related to breast cancer risk 
have been found and validated using data of studies par-
ticipating in the Breast Cancer Association Consortium 
(BCAC), which is a collaboration involving over 100 in-
ternational case control studies. The vast majority of 
studies included in the BCAC are performed in popula-
tions of European ancestry. Therefore, the current PRS is 
mostly applicable to women of European ancestry. With 
some adjustments, the current PRS may be suitable for 
women of Asian ancestry [95]. However, for women with 
any other ancestry, the current PRS provide no correct 
predictive estimate of the breast cancer risk. 

Application of an SNP PRS alongside a risk evaluation 
tool such as Tyrer-Cuzick and a measurement of mam-
mographic density can identify about 45% of breast can-
cers in the top 20% of the population [94].

Detection of Mutations in Known Breast Cancer Genes

While varied laboratory techniques were used previ-
ously to detect germline mutations of the known high-
risk breast cancer genes, these were time consuming, had 

a limited sensitivity, and were offered to families in which 
there was a high likelihood of detection of a germline mu-
tation. The introduction of Sanger sequencing to detect 
intragenic sequence variants followed by the addition of 
MLPA (multiplex ligation-dependent probe amplifica-
tion) to detect whole exon or gene deletions (accounting 
for 10–15% of germline BRCA1/2 [15–20% BRCA1 and 
4–5% BRCA2] PV) has resulted in a much higher muta-
tion detection rate. In recent years, advances in genomic 
technologies with massively parallel sequencing ap-
proaches have lowered the costs further and increased the 
sensitivity of mutation detection, further enabling testing 
to be offered to a wider patient population. 

With these technological advances comes a separate 
and new set of challenges including accurate classifica-
tion of the variants identified [96]. Equally important is 
ensuring that, for mutations detected in the mainstream 
setting, at-risk family members are offered testing for the 
familial PV where appropriate [97]. Where specific 
founder PV are present in certain population groups, lab-
oratories will often retain a Sanger sequencing-based spe-
cific assay for their detection. For example, as approxi-
mately 2–2.5% of Ashkenazi Jewish women carry 1 of 3 
specific mutations (BRCA1 c.68_69delAG, BRCA1 
c.5266dupC, or BRCA2 c.5964delT), which collectively 
account for around 60% of all familial breast cancers in 

Table 2. Frequency of PV in panel tests with controls from the BRIDGES study

Gene Breast cancer 
cases tested, n

PV, n % Controls in 
BRIDGESb 
(n = 50,706), %

OR 95% CI p value

CHEK2a 62,692 1,668 2.66 0.62 4.39 3.89–4.95 <0.0001
BRCA2a 77,439 1,415 1.83 0.27 6.87 5.76–8.19 <0.0001
BRCA1a 77,439 1,350 1.74 0.11 16.05 12.28–20.97 <0.0001
ATMa 62,671 777 1.24 0.30 4.18 3.51–4.97 <0.0001
PALB2a 65,935 627 0.95 0.11 8.68 6.61–11.42 <0.0001
PMS2 35,737 117 0.33 0.07 4.76 3.28–6.92 <0.0001
BRIP1a 59,512 191 0.32 0.15 2.15 1.64–2.80 <0.0001
MSH6 35,737 109 0.31 0.05 6.20 4.03–9.53 <0.0001
TP53a 79,368 238 0.30 0.00 15.04 2.76–150.7 <0.0001
RAD50a 59,375 164 0.28 0.24 1.15 0.91–1.45 0.2594
BARD1a 59,375 158 0.27 0.06 4.51 3.05–6.66 <0.0001
RAD51Ca 59,512 127 0.21 0.05 4.34 2.82–6.66 <0.0001
NBN a 59,375 120 0.20 0.20 1.02 0.78–1.32 0.9462
NF1a 56,097 90 0.16 0.03 5.43 3.14–9.38 <0.0001
MRE11Aa 59,375 79 0.13 0.11 1.21 0.86–1.70 0.3307
RAD51Da 56,230 64 0.11 0.05 2.31 1.46–3.67 0.0003
MSH2 35,737 38 0.11 0.03 3.60 2.00–6.59 <0.0001
MLH1 35,737 35 0.10 0.02 4.97 2.46–10.27 <0.0001
PTENa 79,157 71 0.09 0.01 9.10 3.68–22.55 <0.0001
CDH1a 77,273 53 0.07 0.02 3.48 1.77–6.84 <0.0001

a In breast cancer panels. b Only protein truncating variants, so will exclude CNV and missense variants which, 
for genes like TP53, BRCA1, PMS2, MSH2, MLH1, and MSH6, will underestimate carrier frequency and 
overestimate relative risk. We used 1 in 5,000 to account for this in TP53 [38].



Woodward/van Veen/EvansBreast Care8
DOI: 10.1159/000515319

this population group, testing for these alone will provide 
meaningful predictive information even when negative. 
For example, exclusion of the 3 PV in an Ashkenazi Jew-
ish woman who has a family history of breast cancer will 
reduce her lifetime risk by 40–50%, as the 3 mutations 
make up 50% of the inherited risk. A similar calculation 
applies to Icelandic women, among whom the BRCA2 
c.771_775del p.(Asn257LysfsTer17) founder mutation 
accounts for a high proportion of breast cancer families 
[98]. Given the relatively low cost of full BRCA testing 
and of undertaking panels, testing for common PV is now 
much less commonly carried out unless these account for 
the great majority of hereditary high-penetrance variants 
in a country or population.

Breast Cancer Panels
Until around 2014 the great majority of breast cancer 

genetic testing was bespoke testing and suggested that 
NBN did qualify based on 1 protein-truncating variant, 
i.e., c.657del5, but BRIDGES did not confirm this for pro-
tein-truncating variants as a whole [47]. An idea of detec-
tion rates from commercial testing can be gained from 
testing of breast cancer cases with BRCA1/2 alone, with 
targeted testing of TP53 and syndromic genes such as 
PTEN, STK11, NF1, and CDH1 when individual features 
or the family history indicated. Since that time testing has 
increasingly been carried out using next-generation se-
quencing panels of a much larger series of genes. Typi-
cally, commercial companies offer a breast cancer panel 
and wider panels that include genes that have often never 
been linked convincingly (see above spurious section). In 
2015 Easton et al. [99] suggested limiting breast cancer 
panels to genes that at least demonstrated a 2-fold OR of 
breast cancer. At the time only BRCA1, BRCA2, PALB2, 
ATM, CHEK2, and TP53 met the strict case-control qual-
ifications, with syndromic genes only qualifying based on 
cohort studies. The article used the Ambry Genetics on-
line tool (https://www.ambrygen.com/providers/re-
sources/prevalence-tool; Table 2). The top 5 genes are the 
most frequent in all of the panel studies reported [40]. 
The higher apparent rates from the Lynch syndrome mis-
match repair genes PMS2, MSH6, MLH1, and MSH2 have 
been reported in a number of studies, but none show ev-
idence of an increase in the unbiased Prospective Lynch 
Syndrome Database (PLSD) [100]. This may reflect bias 
in ascertainment towards families with additional cancers 
in the individual or family consistent with Lynch syn-
drome such as colorectal cancer. Controls from the 
BRIDGES study may also not be matched to the popula-
tion and excluded missense variants and CNV which in-
flate the OR for many of the genes but especially PMS2 
and MSH2 [101]. Although the BRIDGES study did find 
borderline significance for MSH6, none of the other mis-
match repair genes were confirmed [47]. We would sug-

gest limiting testing to a panel of BRCA1, BRCA2, PALB2, 
ATM, CHEK2, PTEN, and TP53, leaving TP53 out if the 
patient is aged over 45 years and does not fulfill the Chom-
pret criteria. CDH1 should only be tested if the case is 
lobular and there is a family or personal history of gastric 
cancer or lobular breast cancer [43]. This will limit the 
number of variants of uncertain significance while iden-
tifying the vast majority of actionable genes. There could 
be a case for adding BARD1, RAD51C, and RAD51D for 
triple-negative breast cancer [47].

Interaction of Genetic and Environmental Risk 
Factors
Past history may not be an adequate guide for future 

events. In a number of families for which data are avail-
able, the age of onset of cancer seems to decline over sev-
eral generations and its frequency increases. This appar-
ent trend might be explained by selection bias, but data 
from Iceland again suggest that this is real and can be at-
tributed to the environmental and lifestyle factors that 
account for the rising incidence of breast cancer in popu-
lations in most economically advanced countries of 
northern Europe and North America. At present, most 
evidence suggests that standard risk factors such as repro-
ductive history, breast-feeding, use of oral contraceptives 
or hormone replacement therapy, diet, alcohol consump-
tion, or any other lifestyle factor also influences the can-
cer risk (penetrance) of carriers of breast cancer gene mu-
tations. For example, the penetrance of the Icelandic 
BRCA2 founder mutation increased from 20 to 80% dur-
ing the 20th century [102].

Contralateral Breast Cancer Risk (SNP and Known 
High-Risk Single Genes)
With improved breast cancer survival and high breast 

cancer incidence, some women are at an increased risk of 
developing a contralateral breast cancer. Whilst the over-
all risk is 0.4–0.5% per annum, estimates of likelihood are 
influenced by various factors including germline genetics 
[103].

Where a high-risk single gene disorder is present, pro-
spective cohort studies have shown a contralateral breast 
cancer risk of ∼2% per annum for BRCA1 and 1–2% per 
annum for BRCA2 [11]. The lower incidence for BRCA2 
likely reflects that the breast cancers occurring in BRCA2 
mutation carriers tend to be estrogen receptor positive 
where therapeutic endocrine therapy is indicated. Oo-
phorectomy, particularly undertaken at a younger age  
(< 45 years), is associated with a significant contralateral 
breast cancer risk reduction in BRCA2 carriers [10]. For 
the rarer, but high-risk, equivalent single gene alterations 
(Fig. 2), prospective contralateral breast cancer risk data 
is lacking, although a pragmatic BRCA1/2 equivalent 
high-risk approach is offered in the clinic. Nonetheless, 
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for TP53 carriers diagnosed at age < 35 years, contralat-
eral risks appear higher than for BRCA1 and BRCA2 [104] 
and there is evidence of a relatively high rate of contralat-
eral breast cancer for the moderate-risk genes ATM and 
CHEK2 and a higher frequency of synchronous bilateral 
disease [105, 106].

Considering that collectively SNP account for a great-
er proportion of the familial risk of breast cancer, on a 
breast cancer population basis, it is those with women 
with a higher-risk PRS profile who are more likely to con-
tribute to the population of contralateral breast cancers. 
For an SNP profile based on 313 variants, the contralat-
eral lifetime breast cancer risk ranges from 12 to 20%, 
depending on the initial risk percentile [107].

Germline Genetics and Novel Therapeutic Strategies

Alongside the expansion of genetic testing capabilities 
has been the development of, and subsequent clinical tri-
als involving, poly (ADP-ribose) polymerase (PARP) in-
hibitors, agents which render a cell unable to repair sin-
gle-stranded DNA breaks. Where there is also defective 
homologous recombination to repair double-stranded 
breaks, cell lethality results. These agents are prime can-
didates for treatment of advanced breast cancers associ-
ated with germline or acquired mutations of BRCA1/2 
and potentially also PALB2 given their functional roles in 
homologous recombination pathways. With advances in 
genomic technologies enabling improved turnaround 
times and testing being offered in mainstream clinical set-
tings, identification of a germline BRCA1/2 mutation in 
the oncology setting has important therapeutic implica-
tions, with PARP inhibition of advanced breast cancers 
being associated with increased progression-free survival 
over standard care [108, 109]. Given their use now in a 
maintenance setting in ovarian cancer, they well be em-
ployed after primary treatment even for earlier-stage 
breast cancer.

Conclusion

Breast cancer predisposition is complex, being influ-
enced by multiple genetic and environmental factors, and 
our knowledge of the genetic predisposition landscape 
has changed markedly over the past 30 years. Thus, PV of 
BRCA1 and BRCA2 are more common than originally 
thought, and the associated cancer risks have been shown 
to be influenced by both environmental factors and low-
er-risk susceptibility alleles (SNP). While considerable ef-
fort has been made toward the identification of further 
breast cancer predisposition genes, collectively known 
SNP and currently unidentified genetic modifiers of risk 
are likely to account for the remaining heritability. With 
advances in genomic technologies, more widespread ge-
netic testing is now available but needs to be concomitant 
with accurate variant interpretation and family follow-
up. Looking to the future, the challenges that lie ahead 
will include the incorporation of low-risk allele detection 
in the clinic and accurate risk stratification so that cancer 
prevention and early detection strategies can be put in 
place, especially for contralateral risk in newly identified 
cases.
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