Awards Lecture: Highlights of proffered papers

Sparing IMRT plan (ST-IMRT) was generated. Second, a software. Next, for every patient a standard parotid gland HSCD regions were contoured using in-house made according to international guidelines. The parotid gland volumes and organs at risk (OARs) were delineated systemic treatment were eligible for the study. Target radiotherapy (70 Gy in 35 fractions) with or without Patients with HNC treated with definitive bilateral Material and Methods (XER12M) after treatment.

Results

The study population was composed of 102 patients. 54 were assigned to receive ST-IMRT (arm 1) and 48 HSCD-IMRT (arm 2). The mean parotid gland dose was similar in both arms (contralateral: 24.2 and 23.8 Gy (p = 0.801) for arm 1 and 2, and ipsilateral: 31.7 and 30.8 Gy (p = 0.659), respectively). HSCD region sparing significantly reduced the dose to the HSCD region (contralateral: 16.4 to 12.6 Gy (p = 0.007) for arm 1 and arm 2, respectively, and ipsilateral: 25.0 to 17.4 Gy (p = 0.005), respectively). Baseline xerostomia and other OARs (oral cavity and submandibular glands) dose were similar in both arms. Compared to baseline, FLOW12M was reduced with 16.8% and 8.5% (p = 0.621) for arm 1 and arm 2, respectively and XER12M was 50.0% and 45.9% (p = 0.720), respectively. Multivariate analysis showed that the mean ipsilateral HSCD region dose and baseline xerostomia (none vs. any) were the most important predictors for XER12M. Subset analysis on patients without baseline xerostomia (n = 57) showed that the rate of XER12M was markedly lower, i.e. 40.0% v. 23.8% (p = 0.253) in arm 1 and arm 2, respectively. Furthermore, in this subgroup the only significant different dose parameter between patients with or without XER12M was ipsilateral HSCD region dose (28.9 v. 19.1 Gy, p = 0.007).

Conclusion

In this double-blind RCT, stem cell sparing IMRT did not significantly improve salivary flow or reduce xerostomia 12 months after radiotherapy. However, the ipsilateral HSCD region dose was the most important dosimetric predictor for xerostomia, suggesting that dose to the HSCD region is more important for the development of xerostomia than dose to the entire parotid gland.

OC-0632 Radiotherapy-related lymphopenia affects overall survival in patients with lung cancer

A. Abravanel1, C. Paiivre-Finn1, J. Kennedy2, A. McWilliam1, M. Van Herk1
1The University of Manchester, 2The Christie NHS Foundation Trust, Division of Cancer Sciences Radiotherapy Related Research, Manchester, United Kingdom; The Christie NHS Foundation Trust, Radiotherapy Related Research, Manchester, United Kingdom

Purpose or Objective

Lymphopenia during radiotherapy (RT) has an adverse effect on patient’s quality of life and can be life threatening. However, the relationship between RT dose and lymphopenia is still unknown. This work utilized data mining to identify anatomical regions where the received dose is correlated with lymphopenia. A predictive model of lymphopenia is also proposed.

Material and Methods

562 lung cancer patients treated with curative intent RT were used as a development set. All patients had baseline lymphocytes ≥ 0.5x10^9/L. A Cox model was used to assess prognostic factors of overall survival. Next, two matched groups were defined - patients with and without lymphopenia ≥ G3 (lymphocytes at nadir < 0.5x10^9/L according to CTCAE v4.0) - based on planning target volume (PTV), baseline lymphocytes, prescribed dose, and history. The purpose of matching was to eliminate tumor effects and improve data mining sensitivity. Following matching, 386 patients remained and image-based data mining was used to identify regions where dose correlates significantly with lymphopenia ≥ G3. For that purpose, dose matrices (equivalent dose at 2 Gy/fraction, α/β=10) were aligned using registration of the planning CT images to one reference patient. Then, mean dose distributions were obtained for the two groups and organs of significance were detected. For these organs, various dose parameters, along with non-dosimetric parameters significant in univariate analysis (p < 0.05). Finally, the model was validated on 301 esophageal cancer patients.

Results

Cox regression showed that lymphopenia ≥ G3 in addition to age, PTV, performance status, and RT duration was an independent factor predicting overall survival in lung cancer (Figure 1). The heart, lung, and thoracic vertebrae showed regions where the difference in dose between the matched groups, with and without lymphopenia ≥ G3, was significant. Mean dose to the heart and lung, and V20 of the thoracic vertebrae (volume receiving >20 Gy) correlated most with lymphocyte counts at nadir in the matched set. A model including RT duration, baseline lymphocytes, vertebrae V20, and mean heart dose was then chosen following backward elimination (Table 1). The Hosmer-Lemeshow test, based on deciles of risk, indicated that the model was a good fit. Accuracy and C-statistics of the model in the development set was 75% and 0.82 and in the validation set was 75% and 0.76, respectively.
Lymphopenia ≥ G3 during RT is a significant risk factor for survival in lung cancer patients and careful management is thus required e.g. by minimizing vertebral V20 and mean heart dose in order to limit irradiation of stem cells and blood pool. If dose constraints cannot be met, more frequent monitoring of lymphocyte counts during therapy and use of prophylactic antibiotics are recommended.

Conclusion

Lymphopenia ≥ G3 during RT is a significant risk factor for survival in lung cancer patients and careful management is thus required e.g. by minimizing vertebral V20 and mean heart dose in order to limit irradiation of stem cells and blood pool. If dose constraints cannot be met, more frequent monitoring of lymphocyte counts during therapy and use of prophylactic antibiotics are recommended.

OC-0633 Single dose high dose-rate (HDR) brachytherapy as monotherapy for localised prostate cancer

H. Thermalingam¹, Y.-M. Tsang², P. Hoskin¹

¹Mount Vernon Cancer Centre and The Christie NHS Foundation Trust, Clinical Oncology, London, United Kingdom; ²Mount Vernon Cancer Centre, Radiotherapy, London, United Kingdom

Purpose or Objective

Several series have confirmed the safety and efficacy of multifraction high-dose rate (HDR) brachytherapy (BT) as monotherapy for localised prostate cancer. The role of a more cost-effective and convenient single fraction regime is developing with some conflicting efficacy results to date. We report early tumour control and toxicity outcomes from a national UK database of patients treated in a unifying protocol with a single 19Gy dose of HDR brachytherapy as monotherapy for localised disease.

Material and Methods

From 2013 to 2018, 369 patients with D’Amico classified low (n = 41), intermediate (n = 226) and high-risk (n = 102) prostate cancer were treated in a UK national protocol with HDR monotherapy to a dose of 19Gy delivered in a single treatment exposure; corresponding biologic equivalent prostate dose to 2Gy per fraction of 11Gy (α/β = 1.5). Brachytherapy planning objectives were rectum D2cc <15Gy and maximum <19Gy, urethra D10 <22Gy, D30 <20.8Gy and maximum <28.5Gy. Androgen deprivation therapy (ADT) was given to 36.9% of patients with duration ranging from 6-36 months. Biochemical failure was defined as prostate-specific antigen (PSA) rise of ≥2ng/ml above nadir post-BT. Acute and late genitourinary (GU) and gastrointestinal (GI) toxicities were evaluated using the Common Terminology Criteria for Adverse Events, version 4.0 guidelines. Late toxicity was defined as that originating ≥90 days after implant.

Results

Median follow-up was 26 months. The 2-year biochemical progression-free survival (bPFS) rate was 96% for all patients and 100%, 97% and 95% for low-, intermediate- and high-risk patients respectively. 3-year bPFS rates were 88% (overall), 100% (low-risk), 90% (intermediate-risk) and 79% (high-risk) (p=0.1) (Figure 1). Sites of relapse were radiologically identified in 21 of the 27 biochemical failures (Table 1). Of these, 14 had a local prostate recurrence. Acute grade 2 GU and GI toxicity peaked at 1 month post-implant; prevalence rates of 12% and 3% respectively. No grade 3 or 4 acute toxicity was reported. Two patients developed late grade 3 GU toxicity, both surgically-managed urethral strictures. Two patients developed late grade 3 GI toxicity, both rectal fistulae requiring colostomy.

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical - rising PSA ≥2ng/mL</td>
<td>2</td>
</tr>
<tr>
<td>Biochemical - no rising</td>
<td>4</td>
</tr>
<tr>
<td>Local isolated (prostate only)</td>
<td>11</td>
</tr>
<tr>
<td>Loco-regional (prostate + pelvic nodes)</td>
<td>3</td>
</tr>
<tr>
<td>Loco-distant</td>
<td>2</td>
</tr>
<tr>
<td>Distant pelvic nodal relapse</td>
<td>3</td>
</tr>
<tr>
<td>Radiation + distant</td>
<td>3</td>
</tr>
<tr>
<td>Distant isolated</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

Conclusion

HPR monotherapy delivered in a single dose of 19Gy is a safe and effective treatment for localised prostate cancer that is well-tolerated over the first two years with very good early biochemical control. Further data on long-term efficacy and late toxicity are required. Where biochemical failure occurred in intermediate and high-risk patients, isolated local relapse predominated supporting the rationale for further focal dose escalation to the dominant nodule which should be feasible given the low toxicity of the regime.

Acknowledgements: Varian Medical Systems and contributing investigators at Mount Vernon Cancer Centre, Bristol Oncology Centre, The Christie, Royal Devon and Exeter Hospitals, Southend Hospital, Northampton Hospital and Royal Sussex County Hospital.

OC-0634 Implementation of plan of the day adaptive radiotherapy: Compliance to guidelines

A. Webster¹, S. Hafeez², E. Hall¹, V. Hansen¹, H. McNair¹, R. Lewis², H. Robert²

¹National Radiotherapy Trials Quality Assurance RRTQA, Mount Vernon Cancer Centre, London, United Kingdom; ²The Institute of Cancer Research, 15 Cotswold Road, Sutton- SM2 5NG, United Kingdom; ³Laboratory of Radiation Physics, Odense University Hospital, Odense,