information is used in DRE based nomograms. Furthermore, by incorporating additional core-specific biopsy information instead of the percent of positive cores as mentioned in the existing nomograms, this nomogram could handle with the paradigm shift from saturation biopsies towards targeted biopsies. This updated nomogram could be a useful tool that helps urologists and radiation oncologists to accurately predict the likelihood of LNI before treatment.

OC-0161 Validation of clinical/dosimetric/genetic risk factor models for late RT-induced rectal bleeding

1Fondazione IRCCS Istituto Nazionale dei Tumori, Prostate Cancer Program, Milan, Italy; 2German Cancer Research Center, Division of Cancer Epidemiology-Unit of Genetic Epidemiology, Heidelberg, Germany; 3University of Leicester, Department of Genetics, Leicester, United Kingdom; 4German Cancer Research Center, Division of Cancer Epidemiology, Heidelberg, Germany; 5University of Montpellier, Radiation Oncology Center, Montpellier, France; 6Maastro Clinic and Maastricht University Medical Centre, Department of Radiation Oncology / GROW - School for Oncology and Developmental Biology, Maastricht, The Netherlands; 7University of Manchester, Institute of Cancer Sciences-Christie Hospital, Manchester, United Kingdom; 8Vall d’Hebron Institute of Oncology, Oncogenetics Group, Barcelona, Spain; 9Icahn School of Medicine at Mount Sinai, Genetics and Genomic Sciences, New York, USA; 10Fundación Pública Galega Medicina Xendómica, Molecular Medicine, Santiago de Compostela, Spain; 11Ghent University, Department of Radiotherapy and Experimental Cancer Research- Faculty of Medicine and Health Sciences, Ghent, Belgium; 12University of Milan, Oncology and Hemato-oncology / Radiation Oncology 1 / Prostate Cancer Program, Milan, Italy; 13University of Manchester, Division of Cancer Sciences, Manchester, United Kingdom

Purpose or Objective

REQUITE is an international, prospective observational cohort study, which recruited patients (pts) in 8 countries (April2014-March2017). It is aimed at multinational validation of clinical/dosimetric/genetic risk factors for prediction of late toxicity following radiotherapy (RT). The purpose here was to present preliminary results on validation of such features for late rectal bleeding (LRB) after conventionally fractionated external beam RT (EBRT) for prostate cancer (PCa).

Material and Methods

REQUITE PCa pts treated with 2Gy/fr EBRT and complete 2-year follow-up were included. RT was prescribed according to local regimens, but centres used standardised data collection. Blood samples were collected for DNA extraction/genotyping. Grade≥1 LRB (LRB1+) and grade≥2 LRB (LRB2+) were considered as separate endpoints. Clinical/dosimetric/genetic risk factors already published in the literature were selected from Landoni (Phys Med 2016) and Kems (Ebiomedicine 2016). Selected features are reported in Figure 1a. Association of selected features with LRB was investigated through logistic regression. A final logistic model including only validated predictors was fitted and a nomogram was developed. Confirmed SNPs were used to calculate a polygenic risk score which was included in modeling as a single genetic parameter.

Results

REQUITE enrolled 1190 PCa pts with 2Gy/fr EBRT, 1178 had complete clinical/dosimetric data, 933/1178 had complete 2-year follow-up and were included in this analysis. Description of the population is in Figure 1b. 1Gy increase, with Odds Ratios similar to those reported in literature. Cardiovascular disease (OR=1.97) and abdominal surgery (OR=1.83) were confirmed for LRB2+, with slightly lower ORs with respect to those previously found. Three SNPs were associated with LRB: rs6999859 (OR=1.37), rs4804134 (OR=0.97) and rs7432328 (OR=1.51) with ORs slightly lower than reported previously. The 3 SNPs were included in a polygenic risk score. Diabetes and androgen deprivation were not confirmed as risk factors, and not included in the final models. Figure 2 reports the two model-derived nomograms, model parameters and summary of performance measures.

Conclusion

REQUITE highlighted the need to collect standardized data and the importance of model validation. The present analysis confirmed the predictive value for LRB of most clinical/dosimetric features previously published, together with validation of some SNPs. Resulting models including validated features well described clinical observation in the multi-center REQUITE resource. Use of 3-dimensional dose distributions might overcome the limitations of using dose-volume histogram parameters, which can be explored using the REQUITE resource.

OC-0162 PSMA PET/CT for intraprostatic tumor delineation and characterization based on radiomic features

1Medical Center - University of Freiburg, Department of Radiation Oncology, Freiburg, Germany; 2Medical Center - University of Freiburg, Division of Medical Physics - Department of Radiation Oncology, Freiburg, Germany; 3Medical Center - University of Freiburg, Department of Pathology, Freiburg, Germany; 4Medical Center - University of Freiburg, Department of Urology, Freiburg,