3D modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model

Sarah L. Maguire¹^, Barrie Peck¹,²^, Patty T Wai¹,², James Campbell¹,², Holly Barker ¹,², Aditi Gulati¹,², Frances Daley¹, Simon Vyse³, Paul Huang³, Christopher J Lord¹,², Gillian Farnie⁴, Keith Brennan⁵ and Rachael Natrajan¹,²∗.

¹ The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London UK
² Division of Molecular Pathology, The Institute of Cancer Research, London UK
³ Division of Cancer Biology, The Institute of Cancer Research, London UK
⁴ Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, M20 4BX
⁵ Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT

^Equal contribution

*Correspondence to: Rachael C. Natrajan, PhD, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP

Email: rachael.natrajan@icr.ac.uk

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ath.4778

This article is protected by copyright. All rights reserved.
Raw whole genome, exome and RNA-sequencing data have been deposited into the NCBI Sequence Read Archive under the accession PRJNA308098.

Conflict of interest: The authors declare no conflict of interest.

ABSTRACT

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma *in situ* (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations, changes in gene expression, alongside microenvironmental and recognised histological alterations. Here we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression and to functionally validate potential driver alterations in 3-dimensional (3D) spheroids that may give insight into breast cancer progression and identify targetable alterations in conditions more similar to those encountered *in vivo*. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number, mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including *PIK3CA* and *TP53*) that were acquired from non-malignant MCF10A cells to their malignant counterparts that are also present in primary breast cancers re-analysed from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified *MYC* amplification and previously un-described *RAB3GAP1-HRAS* and *UBA2-PDCD2L* expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression identified that when cells are grown as 3D spheroids, they show perturbations of
cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events, identified alterations in HRAS, PIK3CA, and TP53 that selectively decreased cell growth and were associated with progression from pre-invasive to invasive disease, only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like in vivo. The MCF10 progression series, therefore, represents a good model to dissect potential biomarkers and evaluation of therapeutic targets involved in the progression of breast cancer.

Keywords: Breast cancer progression, 3D spheroid assays, next generation sequencing

INTRODUCTION

The initiation and progression of breast cancer from the transformation of the normal epithelium to carcinoma in situ and invasive disease is a multifaceted process that results in the acquisition of multiple genomic alterations, including changes in genomic copy number, structural rearrangements,
acquisition of mutations as well as altered gene expression and pathway
dysregulation [1-4]. The transition through these states, i.e. non-invasive to
invasive disease is a well-defined and staged process, through which breast
cancers progress to procure the capacity to grow, persist and eventually
spread to secondary sites.

High-throughput molecular profiling of breast cancers and their precursor
lesions revealed that they display distinct genomic and transcriptomic
alterations [3,5-8], however, matched pre-invasive lesions and invasive
counterparts from the same patient are remarkably similar [6-10], suggesting
that the extent of genomic heterogeneity is acquired early on in breast cancer
development. There is evidence that suggests the progression from in situ to
invasive disease is not exclusively driven by specific genomic aberrations in
the pre-invasive cells but is a result of paracrine interactions of tumour cells
with the surrounding stromal environment [3,11-13].

The MCF10 progression series is a product of the ‘normal’ mammary
epithelial cell line MCF10A that is spontaneously immortalised from the
MCF10 mortal cell line (MCF10M), that originated from benign fibrocystic
disease [14]. As MCF10A cells are non-tumorigenic, cells were HRAS
transformed to produce MCF10neoT and MCF10AT1 [15,16] (Figure 1A).
MCF10AT1 cells were subsequently serially passaged in vivo to produce
carcinoma in situ MCF10DCIS.com [17] and invasive carcinoma cells
MCF10Ca1a, MCF10Ca1d and MCF10Ca1h [18,19]. MCF10Ca1a and
MCF10Ca1d are in vitro clones derived from the same in vivo tumour,
whereas MCF10Ca1h is derived from a separate tumour (Figure 1A). This series of cell lines, therefore, represents an isogenic model of disease progression and provides a useful tool for the investigation of molecular changes during progression of human breast neoplasia and the generation of tumour heterogeneity on a common genetic background [19].

Numerous studies have characterised different cell lines from the MCF10 progression series through genomic, transcriptomic and proteomic profiling [20-26]. These have shown that alterations that differ between the cell lines can identify drivers of different stages of breast cancer progression. Indeed, proteomic profiling has identified increased expression of AKT and STAT signalling in the invasive cell lines, events that are also known to occur in primary disease [26]. Similar studies also identified secreted biomarkers known to be involved in metastasis of non-invasive and invasive cells [27]. The model has also proven useful in dissecting the role of poor prognostic biomarkers, such as BRMS1 and FSP1 in vitro [22,28] and for the identification and functional assessment of novel biomarkers of progression from DCIS to invasive disease both using 3-Dimensional (3D) culture and in vivo models [21,23,29].

Here we sought to i) define the genomic characteristics at base pair resolution, of the MCF10 breast cancer progression series of cell lines that are associated with different stages of progression ii) determine the enrichment of pathway alterations in progression from pre-invasive to invasive disease, iii) establish an in vitro functional screening tool using cancer cell line spheroids, which more accurately recapitulate in vivo models and iv) use this
platform as biological proof of concept to identify potential driver genetic alterations of breast cancer progression.

MATERIALS AND METHODS

Cell lines
The isogenic MCF10 cell line series includes the initial untransformed normal cell line, MCF10A, the benign proliferation stages (MCF10AT1 and MCF10NeoT), the carcinoma in situ stage (MCF10DCIS.com) and the invasive carcinoma stages (MCF10CA1a cl1, MCF10CA1d cl1 and MCF10CA1h). Cell lines were kindly provided by The Barbara Ann Karmanos Cancer Institute (Detroit, MI, USA), except for MCF10A cells that were purchased from The American Type Culture Collection (LGC), and MCF10DCIS.com cells from Asterand, Inc. (Herts, UK). Cells were authenticated by short tandem repeat (STR) typing using the Geneprint10 Kit (Promega, UK) and routinely tested for mycoplasma infection using an ELISA-based test (MycAlertTM Mycoplasma detection kit, Lonza, Basel, Switzerland). Cells were grown as described [30] and in Supplementary methods.

Nucleic acid isolation
DNA was isolated using the DNeasy Blood and Tissue kit (Qiagen, UK) and RNA was extracted using Trizol (Life Technologies) according to the manufacturer’s instructions. Nucleic acids were quantified using the Qubit Fluorometer assay (Life Technologies), and RNA integrity was defined using a
Bioanalyzer (Agilent Technologies). All samples had an RNA integrity number (RIN) > 9.

Exome sequencing

Genomic DNA (1 μg) was subjected to DNA capture, using the Human All Exome V4 XT kit (Agilent, CA, USA), and sequenced on 50% of a lane on an Illumina HiSeq2500, to result in a minimum of 109X median depth of coverage. Paired-end reads in FASTQ format were aligned to the reference human genome build GRCh37 using Burrows-Wheeler Aligner (BWA) [31]. Variants were identified using the Genome Analysis Toolkit v3 (GATK) [32] and variant annotation performed according to GATK Best Practices recommendations using Refseq and excluding decoy sequences [33,34]. Exome DNA sequencing was also performed using the Ion Torrent AmpliSeq technology (Life Technologies, Paisley UK), according to the manufacturer’s instructions (Supplementary methods), with median depth >100 for all samples. The Torrent Suite v4.0.2 pipeline (Life Technologies) was used to align raw reads and identify variants. Calls from the GATK where overlapped with calls from The Torrent Suite v4.0.2 pipeline to identify robust mutations. Candidate somatic mutations were called based on filtering of variants with minor allele frequencies >1% according to dbSNP build 132 and with <5 supporting reads. Mutations associated with progression in any cell line from MCF10neoT onwards were subsequently annotated based on calls by Strelka [35] using MCF10As as the baseline comparator and manual review using the Integrative Genomics Viewer [36] to rule out the presence of reads supporting a given mutation in the ‘negative’ cell lines. Variants were subsequently
annotated using Annovar [37]. Mutations were overlaid with annotated data from primary breast cancers from The Cancer Genome Atlas (TCGA) [38] and subjected to functional prediction algorithms (Supplementary methods). A subset of variants taken forward for functional analysis were validated in all cell lines using Sanger Sequencing as described [39].

Whole genome sequencing

Libraries for whole genome sequencing were prepared following the NEBNext Ultra DNA Library Preparation kit (New England Biolabs) from 1μg of DNA according to the manufacturer’s protocol. Whole genome sequencing FASTQ files were aligned to the human genome (hg19) using Burrows-Wheeler Aligner (BWA) [40] and copy number variations were identified using the Patchwork [41] and GISTIC algorithms [42] as described in Supplementary methods. DNA was also subjected to high-resolution microarray comparative genomic hybridisation (aCGH) as previously described [43] and in Supplementary methods.

Paired-end massively parallel RNA sequencing

RNA sequencing was performed using 100ng of ribosomal-depleted RNA from cell lines grown on plastic (2D and as spheroids) as described [44] (See Supplementary methods). RNA sequencing FASTQ files were aligned to the human genome (GRCh37.73) using TopHat version 2.0.8b [45]. Reads mapping to two or more locations were removed from the analysis. Differential gene expression analysis was performed using DESeq2, with an adjusted P-value cut-off of ≤ 0.01 [46]. The gene expression of the pre-invasive cells,
(MCF10A, MCF10AT1 and MCF10neoT) were compared with the invasive cells (MCF10Ca1a, MCF10Ca1d and MCF10Ca1h). MCF10DCIS.com were omitted from this analysis given that they form pre-invasive lesions in vivo that spontaneously become invasive [47]. Fusion genes were identified using Chimerascan [48] and deFuse [49] algorithms. Pathway enrichment was performed using ConsensusPathDB [50].

RT-qPCR and Sanger sequencing validation

Reverse transcription was performed with Superscript III (Invitrogen) using 500ng of RNA per reaction as described [51] and see Supplementary methods. Sequences were visualised using 4Peaks (http://nucleobytes.com/4peaks/). In-frame fusion genes were quantitated in the cell line series using RT-qPCR and the relative abundance of the fusion transcript to β-actin mRNA (ACTB) was calculated using the delta-delta CT method. Primer sequences are listed in Supplementary Table S1.

siRNA screen

Genes were chosen to be screened using siGENOME smartpool siRNA (GEHealthcare) targeting wild-type genes in 96-well spheroid assays, based on either the presence of i) recurrent amplifications and homozygous deletions, or ii) non-synonymous coding mutations in the progression series. Alterations were chosen that were also present in primary tumours assessed from METABRIC [52] and microarray comparative genomic hybridisation studies [53-55] for copy number alterations and from TCGA and other published studies at a frequency >0.5% for somatic mutations [56-60]. For
amplifications and homozygous deletions, those that are either known drivers or predicted drivers (for amplifications) as assessed from a significant correlation of amplification with gene expression [55] were selected. For mutations, those that are known to be drivers or predicted to be drivers from the prediction algorithm FATHMM [61] were triaged for functional assessment.

Three-dimensional spheroid cultures

5000 cancer cells per well of a 96-well low attachment plate (Corning) were reverse-transfected with 37.5 nM of siGENOME smartpool siRNA (GEHealthcare) or siControls (positive (ubiquitin B) and negative (pool 1)) using Lullaby reagent (Oz biosciences) in 180 µl of cold culture medium as described [62]. Spheroid area was calculated using the Celigo S (Nexcelom, MA, USA) and viability was measured using the CellTiter-Glo® assay (Promega, UK). Relative growth was calculated relative to siControl. Hits were scored as >1.2 for increased spheroid growth and <0.8 for reduced cell growth (see Supplementary methods).

Transfections of mammalian cells on plastic

2500 cancer cells per well of a 96-well plate (Greiner) were reverse-transfected with 37.5nM of siGENOME siRNA using Lullaby reagent (Oz biosciences) as described [54] and see Supplementary methods.

Immunohistochemistry of spheroid cultures

Spheroids were grown for 7 d and fixed in 3.8% formaldehyde for 30 min, washed with PBS three times and stored at 4 °C. Spheroids were then
pooled, dehydrated, embedded in paraffin and sectioned. The spheroid sections were then de-paraffinized with xylene, rehydrated, microwaved and then incubated overnight with primary antibodies against Ki67, TP53 and pAKT (see Supplementary methods).

Statistical analyses

P-values less than 0.05 (heteroscedastic, two-sided) were considered statistically significant for comparisons of the siRNA screen.

Data availability

Whole genome, exome and RNA-sequencing data have been deposited in the NCBI Sequence Read Archive under the accession PRJNA308098.
RESULTS

Genomic alterations associated with breast cancer progression

To better understand the role of genomic and transcriptomic alterations in breast cancer progression we performed whole exome, low depth whole genome and RNA-sequencing of the MCF10 progression series (Figure 1A) to comprehensively define the repertoire of mutations, copy number alterations, expressed fusion genes and transcriptional alterations. Whole exome sequencing was performed using both capture and amplicon based sequencing at >100x depth. This identified 7275 coding non-synonymous variations (SNV’s) in MCF10A; 7327 in MCF10neoT; 7336 in MCF10AT1; 7364 in MCF10DCIS.com; 7354 in MCF10Ca1a; 7351 in MCF10Ca1d and 7358 in MCF10Ca1h. Taking MCF10A cells as the baseline, we identified mutations in 196 genes that were acquired in the malignant cell lines (i.e. not present in MCF10A non-malignant cells, Supplementary Table S2) including 64 genes that also occur in The Cancer Genome Atlas (TCGA) and other published DNA sequencing studies [56-60] (Figure 1B). These included a PIK3CA hotspot mutation (H1047R) acquired in MCF10DCIS.com cells and maintained in the invasive cell lines MCF10Ca1a-1h (in agreement with previous reports [63]) and novel convergent mutations in TP53 in MCF10Ca1a and MCF10Ca1h cells. We next defined the presence of relevant breast cancer predicted driver gene mutations that were acquired in the malignant cells, by annotating the variants with a combination of functional prediction algorithms (see Materials and Methods) and the specific cancer driver prediction algorithm FATHMM [61]. This analysis revealed 53 mutations that were predicted to disrupt protein function and seven predicted cancer
driver mutations. These encompassed four predicted cancer driver mutations that were acquired from non-malignant MCF10A cells to malignant DCIS.com cells (HRAS, EPHA7, MAP3K12, PCSK5) and three that were acquired from MCF10DCIS.com cells to invasive cells (MCF10Ca1a-1h), (PTPRD, TP53, VSP13A) (Figure 1E, Supplementary Figure S1 and S2). Furthermore, 57% of all variants were expressed at the RNA-level, (Supplementary Table S2).

Somatic copy number alterations associated with progression

We used low depth (on average 7x (range 6-9x coverage) whole genome sequencing to characterise the repertoire of copy number alterations of cell lines within the progression series. Consistent with previous observations [24,63], MCF10A cells have high-level gains of 1q, gains of 5q, 8q, 19q and 20q and homozygous deletion of 9p encompassing CDKN2A/B (Supplementary Figure S3). Indeed, the other cell lines are comparable, with high-level focal amplification of 8q24.21, encompassing MYC, 10q22.1-q22.2 and 17p11.2 (Figure 1D, Supplementary Table S3). They do not have gain of 1q and therefore are probably derived from a clone of the parental line that had normal 1q (Figure 1C). Interestingly, MCF10DCIS.com cells had both the gain of 1q seen in the parental MCF10A cells and the three focal high-level amplifications. A number of homozygous deletions were acquired during progression including 8p23.1 (MCF10DCIS.com, MCF10Ca1a and MCF10Ca1d), 12p13.2 (MCF10AT1, MCF10DCIS.com and MCF10Ca1a) and 22q12.2 (MCF10neoT, MCF10AT1, MCF10DCIS.com, MCF10Ca1a and MCF10Ca1d) (Figure 1C, Supplementary Figure S3 and S4 and Supplementary Table S3). In addition acquisition of a focal intragenic
homozygous deletion of RUNX1 (MCF10DCIS.com, MCF10Ca1a and MCF10Ca1d) was identified (in agreement with previous reports [63]).

Fusion gene transcripts associated with progression

Previous studies have reported that breast cancers can show extensive large-scale genomic rearrangements [64] and have documented the presence of expressed fusion genes that drive the malignant phenotype of the cells and present therapeutic opportunities [43,65]. RNA-sequencing analysis of the MCF10 progression series identified expressed fusion genes in MCF10DCIS.com (n=1), MCF10Ca1d (n=1) and MCF10Ca1h (n=2) that were identified by both deFuse [49] and Chimerascan [48] fusion gene detection algorithms (Supplementary Table S4). These included two fusion transcripts predicted to result in novel functional proteins (i.e. in-frame) that were not present in MCF10A cells, namely an inter-chromosomal fusion involving RAB3GAP1-HRAS, detected in MCF10DCIS.com and MCF10Ca1d cells, and an intra-chromosomal fusion on chromosome 19q involving UBA2-PDCD2L in MCF10Ca1h cells (Figure 2A,B). Validation of the fusion transcripts using RT-qPCR and Sanger sequencing demonstrated that the in-frame RAB3GAP1-HRAS fusion was present in all cell lines that had been subjected to HRAS transformation (i.e. from MCF10AT1 onwards), whereas UBA2-PDCD2L was only seen in MCF10Ca1h cells (Figure 2C and D, Supplementary Table S4). Neither fusion was detected in the control cell line, MCF7. Furthermore, the levels of RAB3GAP1-HRAS transcript expression increased from MCF10neoT cells across the progression series with MCF10Ca1d cells showing the highest expression. This observation mirrored HRAS gene expression levels
detected in the RNA-sequencing data (Figure 2E), suggesting that the differences in HRAS expression may be attributed to the presence of the fusion gene. Interestingly, the reciprocal fusion of HRAS-RAB3GAP1 was detected in MCF10DCIS.com cells, however, this was not predicted to result in a functional protein. Mining of the TCGA Fusion gene Data Portal (http://54.84.12.177/PanCanFusV2/) [66] and other published fusion data-sets in breast cancer [43,64,65] identified two additional in-frame fusion genes involving RAP3GAP1 in breast cancer (RAB3GAP1-ACMSD and RAB3GAP1-MAP4K3). An in-frame HRAS fusion gene was identified in a head and neck primary tumour (RNH1-HRAS) that leads to increased levels of HRAS expression [66], however, no additional HRAS fusion genes were detected in primary breast cancers. An out-of-frame UBA2-PDCD2L fusion was detected in a primary ovarian cancer, but none was observed in breast cancer.

Pathway alterations associated with breast cancer progression

We next sought to assess the differences in gene expression during progression from pre-invasive to invasive disease. Differential gene expression of pre-invasive cell lines (MCF10A, MCF10AT1, MCF10NeoT) and invasive cell lines (MCF10CA1a, MCF10Ca1d, MCF10Ca1h) identified 236 significantly differentially expressed genes (p-value FDR <0.01, DEseq2), (Figure 3A, Supplementary Table S5). These genes were enriched in pathways involved in platelet amyloid precursor protein processing, senescence, autophagy and arachidonic acid metabolism (Figure 3B, Supplementary Table S6). Previous studies have demonstrated that the MCF10 progression series behave differently when grown in 3D culture and
provide a useful model for studying driver alterations associated with oncogenic transformation [67,68] and disease progression [69,70]. Indeed, cell lines from the progression series formed spheroids, displayed good growth kinetics and positive histological staining of pro-proliferative markers, Ki67 and phospho-AKT (Supplementary Figure S5). To further evaluate functional pathways that may be dysregulated in breast cancer progression, in cells grown in more in vivo like conditions [62], we performed RNA-sequencing of the series of cell lines grown as 3D spheroids. This analysis identified 1022 genes that were differentially expressed between pre-invasive and invasive cell lines (Supplementary Table S5). Functional annotation of these genes identified significant over-representation of pathways involved in nuclear receptor signalling, EGFR signalling, ErbB receptor signalling, FGFR signalling, signal transduction, integrin signalling and extracellular matrix organisation (Figure 3A,B and Supplementary Table S6). These findings indicate that more cancer-relevant pathways are active when cells are grown in a 3D environment, possibly reflecting the way the cells were selected for in vivo when they were generated [19].

Functional characterisation of driver alterations upon progression

Given our observations that when grown in spheroid cultures, the MCF10 cell line series show enrichment of cancer-relevant pathways associated with progression to invasive disease, we sought to functionally test which genomic alterations (amplifications, homozygous deletions and mutations) that are also seen in primary breast cancers (Figure 3C and see Materials and methods) would be driving the growth of these cells. Cell lines were optimised for...
siRNA-mediated gene depletion where ablation of the tumour suppressor Phosphatase and tensin homolog (PTEN) and Ubiquitin B (UBB) resulted in increased and decreased spheroid growth relative to control siRNA, respectively (Supplementary Figure S5). A siRNA-based screen of 18 genes identified three that constitute potential driver events, namely PIK3CA (p=0.0485, t-test), HRAS, and TP53 (p<0.0001, t-test) that when silenced decreased spheroid growth and were associated with genomic status (Figure 3D, Supplementary Table S7). De-convolution of the siRNA oligo pools identified that all of these genes were oncogenic drivers, resulting in decreased spheroid growth when silenced (Supplemental Figure S6). These included PIK3CA where cells with a H1047R activating mutation, showed selective dependency on PIK3CA silencing (Figure 4A). In addition, PIK3CA mutant cells were also selectively dependent on AKT1 silencing (p=0.046, t-test), perhaps reflective of the subsequent increased AKT1 activation, (Figure 4A and Supplementary Figure S5 and S6), however this appeared to be an effect specific to cells grown as spheroids, and was not observed in traditional 2D culture (Figure 4B and Supplementary Table S7). Furthermore, the ER-negative breast cancer cell line BT20, which harbours a H1047R PIK3CA mutation, showed a similar effect (Figure 4B). Moreover, breast cancer cell line spheroids displayed dependency on PIK3CA according to their PIK3CA status with mutant MCF7 and T47D cells (harbouring E575K and H1047R PIK3CA mutations respectively) being sensitive to PIK3CA silencing while MDA-MB-231 cells (WT) showed no change in viability after PIK3CA silencing. It is tempting to posit that this is due to the maintenance of AKT activity under unfavourable conditions imparted by the spheroid architecture,
as spatial AKT activity was observed in the pre-invasive cell lines, while stable and high P-AKT staining was observed in the invasive cell line spheroids that harboured the activating mutation in PIK3CA (Figure 4E).

Interestingly we observed two independent SNV’s in MCF10Ca1a and MCF10Ca1h in the DNA binding domain of TP53, suggestive of convergent evolution. TP53 silencing in the progression series significantly correlated with smaller spheroid size in mutant cells, suggesting that these mutations are acting in an oncogenic manner (p=0.0051, \(t \)-test). Moreover, there was a significant dependency on TP53 associated with increased progression (pre-invasive versus invasive cells, p=0.0021, \(t \)-test) regardless of mutation status that appeared to correlate with increased nuclear accumulation of TP53 protein in these cells (Figure 4D,E). Of note, all cell lines showed sensitivity to MYC silencing, suggesting that cells are dependent on MYC transcriptional activity independent of amplification status (Figure 4D).

Given that MCF10A cells underwent HRAS transformation to produce subsequent cell lines, we tested whether cells would still be addicted to the oncogenic RAS signalling further along progression. Indeed, silencing of HRAS reduced spheroid growth of all cells subsequent to MCF10A (Figure 5A), however this association appeared to be significantly correlated with expression of the RAP3GAP1-HRAS fusion (\(r=-0.7857, p=0.0480 \), Spearman rank correlation), rather than on total HRAS expression (\(r=-0.5714, p=0.2 \), Spearman rank correlation) and in a similar manner to PIK3CA and AKT1 seemed to be more specific to cells grown as spheroids (Supplementary
Specific silencing of the RAB3GAP1-HRAS fusion however had no effect on spheroid growth (Figure 5A and B), perhaps indicative of the subclonal nature (as evidenced by the low percentage of the transcript involved in the fusion, i.e. isoform fraction) of the cells in which the fusion was detected from RNA-sequencing (Supplementary Table S4).
DISCUSSION

Here we have performed a comprehensive analysis of both the genomes (at base-pair resolution) and transcriptomes of the MCF10 cell line series that represent different stages of breast cancer progression when grown in vivo and demonstrated that these cell lines harbour relevant driver alterations seen in primary breast cancers, and represent a good model for studying breast cancer progression using in vitro spheroid models.

Overall, the patterns of genomic copy number alterations are similar between the cell lines, however, key differences emerge, suggestive of subclonal selection from the parental MCF10A cells. In particular, at base-pair resolution, the number of mutations varied across cell lines, with a number of key driver mutations being selected for at different stages of progression. These included a PIK3CA hotspot mutation in MCF10DCIS.com cells that leads to increased AKT signalling and TP53 mutations in the more aggressive invasive cell lines MCF10Ca1a and MCF10Ca1h [71], evidenced by increased nuclear accumulation of TP53 protein in these cells. We identified a number of mutations that were clonally selected through progression for which the allele fraction altered in the different cell lines. It may be the case that such alterations are merely passengers (i.e. do not confer a selective advantage to the cells), however, they may provide a growth advantage at different stages of progression, which is in agreement with recent studies from triple-negative breast cancers, where bona fide driver alterations have been shown to be subclonal and heterogeneously distributed [59]. At the copy number level, focal high-level MYC amplification was acquired in the malignant cell lines as...
previously reported [63], however it was not seen in MCF10A cells, which harboured gain of the entire arm of 8q. This finding is in agreement with other reports that find gain of MYC to be an initiating event in this cell line panel, rather than focal amplification [72]. Indeed, MYC amplification has been associated with a poor prognosis [73,74] and is often acquired in metastatic disease [75,76]. All cells in the progression series though appeared to be sensitive to MYC silencing. Although the majority of the cell lines appeared to be derived from a clone lacking 1q gain, presence of 1q gain in MCF10DCIS.com may alternatively be a result of an iso-chromosome 1q being lost in culture.

Consistent with previous observations that the MCF10 progression series behave differently when grown in 3D culture [69,70], we found a number of distinct differentially regulated pathways associated with progression when cells were grown in spheroids compared to traditional 2D culture, perhaps reflecting the nature of the nutrient and oxygen gradients in these models [62]. Indeed, functional assessment of recurrent alterations identified oncogenic dependencies that were only observed when assessed in spheroid models, including a selective dependency on PIK3CA signalling in cells harbouring a H1047R mutation that was corroborated in additional breast cancer cells harbouring the H1047R mutation. Indeed, the H1047R mutation has been shown to promote metabolic adaption by increasing de novo lipogenesis [77], a feature observed in aggressive cancers.
Through exome sequencing, we identified independent non-synonymous coding mutations in TP53 in the MCF10Ca1a and MCF10Ca1h cell lines. Consistent with observations that TP53 mutations can be late events in breast cancer progression [59] and are associated with a poor prognosis [78], it has been shown that these sub-lines can spontaneously metastasise when grown in vivo [19]. Interestingly in all the invasive cells (MCF10Ca1a-1h), increased nuclear TP53 protein accumulation was observed, which correlated with sensitivity to TP53 silencing suggesting TP53 dysregulation is associated with increased cellular invasiveness, and an oncogenic dependency in this model.

In addition to the identification of mutations associated with progression, we also identified two in-frame fusion genes in the cell line series. These included an HRAS fusion that was acquired in MCF10neoT cells, which were transformed by oncogenic HRAS, and was maintained in all subsequent cell lines. This fusion gene joins the promoter of RAB3GAP1, a GTPase-activating protein, to exon 3 of HRAS. Whilst interesting to speculate this fusion gene would also lead to selective HRAS dependency, given an observed correlation of HRAS oncogenic dependency and expression of the fusion gene, we observed no effect on spheroid growth with selective inhibition of the fusion gene. This may be due to the fact that the relative fraction of fusion transcript compared to wildtype transcript represents around 1% of all HRAS reads. As no additional HRAS fusion genes were observed from re-analysis of published RNA-sequencing data, this fusion most likely represents a consequence of HRAS v12 transformation.
Our study, although comprehensive, is not without limitations. HRAS mutation is not a common genetic alteration in human breast cancer, and thus the cell line series model might not accurately reflect the tumorigenic process in human breast cancers. This is exemplified by the identification of a fusion gene involving HRAS in the model and the lack of such fusion genes in primary breast cancer. Whilst exome sequencing identified acquisition of mutations in the malignant cells, we cannot rule out that these are present at very low subclonal populations in the parental MCF10A cells, given we did not perform high-depth targeted re-sequencing. Nevertheless, through exome sequencing with an average depth of 100x, we observed clonal selection of alterations across different cell lines, suggesting that MCF10A cells are oligoclonal. Whilst our copy number data support this, the low depth of coverage may also limit the detection of subclonal events. Our triage of genomic alterations for functional assessment mainly identified mutational events and homozygous deletions rather than amplifications that were representative of primary breast cancers. This may be due to our triage strategy, however, it is known that in general TNBCs lack many recurrent amplification events [59]. Moreover, genomic alterations tested that did not impart a difference in spheroid growth may score in additional assays and may warrant further testing. In addition, functional assessment of differentially expressed genes may provide further insights into the drivers of progression in this model.

In conclusion, comprehensive characterisation of the MCF10 isogenic progression series has identified a number of driver alterations that are
associated with progression from pre-invasive to invasive cellular phenotypes that model genomic alterations seen in primary breast cancer. Moreover, more accurate modelling of the in vivo tumour environment using 3D culture methods allows the validation of founder (HRAS transformation) and acquired (PIK3CA and TP53 mutations) events that would not have been appreciated using traditional techniques. The MCF10 progression series therefore represents a good model to dissect potential biomarkers and evaluation of therapeutic targets involved in the progression of breast cancer.

ACKNOWLEDGEMENTS
This study was funded by Breast Cancer Now. RN is the recipient of a Breast Cancer Now Career Development Fellowship (2011MaySF01).

AUTHOR CONTRIBUTIONS
RN conceived the study. KB and GF provided materials. BP, PTW, SV, FD and RN carried out the experiments. SLM, JC, HB and AG performed the bioinformatics analysis. SLM, BP, PH, CJL and RN discussed and interpreted the results. SLM, BP, CJL and RN wrote the first draft. All authors read and approved the final manuscript.
REFERENCES

Figure 1: Spectrum of acquired alterations in the MCF10 progression series. (A) Diagrammatic representation of the generation of the MCF10 progression series. Non-invasive cells lines are highlighted in grey, DCIS.com cell are highlighted in green and invasive cell lines are highlighted in red. Circled numbers represent number of days cell lines were grown in vivo before reimplantation. (B) Matrix of somatic mutations identified acquired from MCF10A cells that also occur in The Cancer Genome Atlas (TCGA) breast cancer data. Mutations were classified according to membership of Cancer Gene Census (navy blue) [79], the results of gene driver the prediction algorithm FATHMM (purple) [61] and other prediction algorithms (grey), see methods. (C) Heatmap of gains (red) and losses (blue) identified from GISTIC. The genomic position is plotted along the x-axis and samples on the y-axis. Heatmap of focal (<10Mb) amplifications and homozygous deletions.
identified from GISTIC. The colour scale bar depicts homozygous deletions to amplifications (-2 to +2). Note the presence of focal amplification of MYC (8q24.21) acquired from MCF10neoT cells onwards. (D) Chromosome 8 plots of MCF10A, MCF10neoT and MCF10Ca1a cells of log₂ normalised sequencing reads (y) plotted against base-pair position cross chromosome 8. Green represents an amplification log₂ ratio >1.8. (E) Unrooted phylogenetic tree generated by neighbour joining of the MCF10 progression series based on variant data and whole arm chromosomal changes acquired from MCF10A. Driver mutations and chromosomal changes acquired are indicated in grey.
Figure 2: Identification of expressed fusions in the MCF10 progression series. (A) Cartoon representation of genomic location, orientation and architecture of expressed RAB3GAP1-HRAS fusion gene. Representative RNA-sequencing reads spanning the fusion are also displayed. The RT-PCR
product was Sanger-sequenced; confirming the fusion junction, and a representative chromatogram from MCF10Ca1d cells is shown. (B) Cartoon representation of genomic location, orientation and architecture of expressed UBA2-PDCD2L fusion gene. Representative RNA-sequencing reads spanning the fusion are also displayed. The RT-PCR product was Sanger-sequenced; confirming the fusion junction, and a representative chromatogram from MCF10Ca1h cells is shown. (C) Bar plot showing relative expression of RAB3GAP1-HRAS fusion gene in the MCF10 progression series detected by qRT-PCR. (D) Bar plot showing relative expression of UBA2-PDCD2L fusion gene in the MCF10 progression series detected by qRT-PCR. (E) Bar plot of normalised reads of HRAS in the MCF10 progression series from RNA-sequencing.
Figure 3: Evaluation of pathways and driver alterations in spheroid cultures. (A) Volcano plots showing the differentially expressed transcripts between pre-invasive and invasive cells from the MCF10 progression series cultured under both 2D and 3D conditions. Red = FDR p values <0.01. (B) Bar
plot depicting the significantly over-represented pathways (ConsensusDb q value <0.01) from (A). (C) Schematic of gene selection for the siRNA screen. (D) Matched heatmaps of genomic status (mutation, amplification and homozygous deletion), results of spheroid growth after siRNA mediated silencing and gene expression. Relative spheroid growth is measured by the survival fraction of treated cells relative to siControl. Hits were triaged as a relative survival fraction compared to non-targeting control of <0.8 or >1.2. Gene expression is the log₂ median centred normalised reads from the RNA-sequencing data.
Figure 4: Functional validation of dependency on driver events in the MCF10 progression series. (A) Progression series cell lines were reverse transfected with siRNAs against PIK3CA, AKT1 and a non-targeting control. Spheroids were formed after 24 hours in low attachment plates and media was topped up every three days. After seven days spheroid viability was determined using Cell Titre Glo. (B) DCIS.com and BT20 cell lines were
reverse transfected with siRNAs targeting PIK3CA, UBB and non-targeting control, under both 2D and 3D conditions. Media was topped up every three days. Viability was determined using Cell Titre Glo. Statistical comparisons were performed using Student’s t-test (* p ≤0.05). (C) MDA-MB-231, MCF7 and T47D cell lines were reverse transfected with siRNAs targeting PIK3CA, UBB and non-targeting control, under 3D conditions. Media was topped up every three days and spheroid viability was determined using Cell Titre Glo. Statistical comparisons were performed using Student’s t-test (* p ≤0.05). (D) Progression series cell lines were reverse transfected with siRNAs against TP53, MYC and a non-targeting control. Spheroids were formed after 24 hours in low attachment plates and media was topped up every three days. After seven days spheroid viability was determined using Cell Titre Glo. (E) Progression series were grown for seven days. Media was topped up every three days. On day seven, spheroids were fixed using formaldehyde, embedded, sectioned and stained for P-AKT (473) and total TP53. Representative images are shown. Scale bar = 100μm
Figure 5: Functional validation of dependency on TP53 and HRAS in the MCF10 progression series. (A) Progression series cell lines were reverse transfected with siRNAs against HRAS, RAB3GAP1-HRAS and a non-targeting control. Spheroids were formed after 24 h in low attachment plates and media was topped up every three days. Spheroid viability was determined using Cell Titer Glo. (B) MCF10Ca1a cells were reverse transfected with single and pooled siRNAs targeting HRAS, RAB3GAP1-HRAS and a non-targeting control for 72hrs. HRAS, RAB3GAP1-HRAS expression was determined using RT-qPCR. Expression was normalised to loading controls B2M and β-actin. (ACTB)