Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors.

2.50
Hdl Handle:
http://hdl.handle.net/10541/91418
Title:
Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors.
Authors:
Brown, Michael D; Davies, D H; Skinner, M A; Bowen, G; Hollingsworth, S J; Mufti, G J; Arrand, John R; Stacey, Simon N
Abstract:
Advances in understanding the role of dendritic cells (DCs) as the major antigen (Ag)-presenting cell type of the immune system combined with the recent development of methods for the ex vivo expansion of human DCs have opened the possibility for the transfer of tumor Ags to DCs with a view toward tumor immunotherapy. In this study, we examined the feasibility of Ag transfer to cultured human DCs using the host range-restricted avipoxvirus, fowlpoxvirus (FWPV). FWPV was found to infect and express a lacZ marker gene in a number of mammalian cell lines of fibroblastic, epithelial, and hemopoietic lineage origins. LacZ recombinant FWPV (rFWPV) was found subsequently to infect human DCs that had been cultured ex vivo from peripheral blood monocytes. Using rFWPV containing lacZ under the control of a vaccinia virus (VV) early/late promoter (p7.5K) and a 10 plaque-forming units per cell multiplicity of infection, >80% of cells expressed the lacZ marker gene. Quantitative analysis showed that the level of expression continued to rise for 5 days postinfection, at which point the experiments were terminated. Replication-competent recombinant VV (rVV) was also shown to be capable of transferring the marker gene to primary DC cultures. However, neither rFWPV nor rVV were able to express transgenes under the control of late viral promoters, indicating that both rFWPV and rVV infections are arrested at an early stage in human DCs. Infection of CD83 + DCs by rFWPV was confirmed by double-staining cytochemistry. We conclude that host range-restricted FWPV can be used efficiently to transfer Ag genes to human DCs ex vivo and may have a role in the development of tumor immunotherapy protocols.
Affiliation:
Cancer Research Campaign, Section of Molecular Genetics, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester, United Kingdom.
Citation:
Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors., 6 (3):238-45 Cancer Gene Ther.
Journal:
Cancer Gene Therapy
Issue Date:
1999
URI:
http://hdl.handle.net/10541/91418
DOI:
10.1038/sj.cgt.7700014
PubMed ID:
10359209
Type:
Article
Language:
en
ISSN:
0929-1903
Appears in Collections:
All Paterson Institute for Cancer Research

Full metadata record

DC FieldValue Language
dc.contributor.authorBrown, Michael Den
dc.contributor.authorDavies, D Hen
dc.contributor.authorSkinner, M Aen
dc.contributor.authorBowen, Gen
dc.contributor.authorHollingsworth, S Jen
dc.contributor.authorMufti, G Jen
dc.contributor.authorArrand, John Ren
dc.contributor.authorStacey, Simon Nen
dc.date.accessioned2010-02-08T15:37:36Z-
dc.date.available2010-02-08T15:37:36Z-
dc.date.issued1999-
dc.identifier.citationAntigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors., 6 (3):238-45 Cancer Gene Ther.en
dc.identifier.issn0929-1903-
dc.identifier.pmid10359209-
dc.identifier.doi10.1038/sj.cgt.7700014-
dc.identifier.urihttp://hdl.handle.net/10541/91418-
dc.description.abstractAdvances in understanding the role of dendritic cells (DCs) as the major antigen (Ag)-presenting cell type of the immune system combined with the recent development of methods for the ex vivo expansion of human DCs have opened the possibility for the transfer of tumor Ags to DCs with a view toward tumor immunotherapy. In this study, we examined the feasibility of Ag transfer to cultured human DCs using the host range-restricted avipoxvirus, fowlpoxvirus (FWPV). FWPV was found to infect and express a lacZ marker gene in a number of mammalian cell lines of fibroblastic, epithelial, and hemopoietic lineage origins. LacZ recombinant FWPV (rFWPV) was found subsequently to infect human DCs that had been cultured ex vivo from peripheral blood monocytes. Using rFWPV containing lacZ under the control of a vaccinia virus (VV) early/late promoter (p7.5K) and a 10 plaque-forming units per cell multiplicity of infection, >80% of cells expressed the lacZ marker gene. Quantitative analysis showed that the level of expression continued to rise for 5 days postinfection, at which point the experiments were terminated. Replication-competent recombinant VV (rVV) was also shown to be capable of transferring the marker gene to primary DC cultures. However, neither rFWPV nor rVV were able to express transgenes under the control of late viral promoters, indicating that both rFWPV and rVV infections are arrested at an early stage in human DCs. Infection of CD83 + DCs by rFWPV was confirmed by double-staining cytochemistry. We conclude that host range-restricted FWPV can be used efficiently to transfer Ag genes to human DCs ex vivo and may have a role in the development of tumor immunotherapy protocols.en
dc.language.isoenen
dc.subject.meshAnimals-
dc.subject.meshAntigens-
dc.subject.meshAvipoxvirus-
dc.subject.meshCell Line-
dc.subject.meshChick Embryo-
dc.subject.meshDendritic Cells-
dc.subject.meshFibroblasts-
dc.subject.meshGene Transfer Techniques-
dc.subject.meshGenetic Vectors-
dc.subject.meshHumans-
dc.subject.meshImmunotherapy-
dc.subject.meshTime Factors-
dc.titleAntigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors.en
dc.typeArticleen
dc.contributor.departmentCancer Research Campaign, Section of Molecular Genetics, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester, United Kingdom.en
dc.identifier.journalCancer Gene Therapyen

Related articles on PubMed

All Items in Christie are protected by copyright, with all rights reserved, unless otherwise indicated.