• Mutant CEBPA: priming stem cells for myeloid leukemogenesis.

      Somervaille, Tim C P; Cleary, M L; Cancer Research UK Leukaemia Biology Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK. (2009-11-06)
    • Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

      Somervaille, Tim C P; Matheny, Christina J; Spencer, Gary J; Iwasaki, Masayuki; Rinn, John L; Witten, Daniela M; Chang, Howard Y; Shurtleff, Sheila A; Downing, James R; Cleary, Michael L; et al. (2009-02-06)
      The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional subprogram more akin to that of embryonic stem cells (ESCs) than to that of adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3, and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when coexpressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia-initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor-prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells (CSCs) to prognosis in human cancer.